Skip to main content
Log in

From Navier-Stokes to Einstein

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show by explicit construction that for every solution of the incompressible Navier-Stokes equation in p + 1 dimensions, there is a uniquely associated “dual” solution of the vacuum Einstein equations in p + 2 dimensions. The dual geometry has an intrinsically flat timelike boundary segment Σc whose extrinsic curvature is given by the stress tensor of the Navier-Stokes fluid. We consider a “near-horizon” limit in which Σc becomes highly accelerated. The near-horizon expansion in gravity is shown to be mathematically equivalent to the hydrodynamic expansion in fluid dynamics, and the Einstein equation reduces to the incompressible Navier-Stokes equation. For p = 2, we show that the full dual geometry is algebraically special Petrov type II. The construction is a mathematically precise realization of suggestions of a holographic duality relating fluids and horizons which began with the membrane paradigm in the 70’s and resurfaced recently in studies of the AdS/CFT correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. Y. Oz and M. Rabinovich, The Penrose inequality and the fluid/gravity correspondence, JHEP 02 (2011) 070 [arXiv:1011.5895] [INSPIRE].

    Article  ADS  Google Scholar 

  3. T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Ph.D. thesis, Université Pierre et Marie Curie, Paris VI, Paris, France (1979).

  4. T. Damour, Surface effects in black hole physics, in Proceedings of the second Marcel Grossmann meeting on general relativity, R. Ruffini ed., North Holland, The Netherlands (1982).

  5. R. Price and K. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995)1260 [gr-qc/9504004] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Policastro, D. Son and A. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  9. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Karch, Experimental tests of the holographic entropy bound, hep-th/0311116 [INSPIRE].

  12. P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  13. E. Gourgoulhon and J.L. Jaramillo, A 3 + 1 perspective on null hypersurfaces and isolated horizons, Phys. Rept. 423 (2006) 159 [gr-qc/0503113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005)086009 [hep-th/0506184] [INSPIRE].

    ADS  Google Scholar 

  15. V.E. Hubeny, M. Rangamani, S. Minwalla and M. Van Raamsdonk, The fluid-gravity correspondence: the membrane at the end of the universe, Int. J. Mod. Phys. D 17 (2009) 2571 [INSPIRE].

    ADS  Google Scholar 

  16. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Bhattacharyya et al., Forced fluid dynamics from gravity, JHEP 02 (2009) 018 [arXiv:0806.0006] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Eling, Hydrodynamics of spacetime and vacuum viscosity, JHEP 11 (2008) 048 [arXiv:0806.3165] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Fouxon and Y. Oz, Conformal field theory as microscopic dynamics of incompressible euler and Navier-Stokes equations, Phys. Rev. Lett. 101 (2008) 261602 [arXiv:0809.4512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. R.K. Gupta and A. Mukhopadhyay, On the universal hydrodynamics of strongly coupled CFTs with gravity duals, JHEP 03 (2009) 067 [arXiv:0810.4851] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. I. Fouxon and Y. Oz, CFT hydrodynamics: symmetries, exact solutions and gravity, JHEP 03 (2009) 120 [arXiv:0812.1266] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Eling, I. Fouxon and Y. Oz, The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. C. Eling and Y. Oz, Relativistic CFT hydrodynamics from the membrane paradigm, JHEP 02 (2010) 069 [arXiv:0906.4999] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Padmanabhan, Thermodynamical aspects of gravity: new insights, Rept. Prog. Phys. 73 (2010)046901 [arXiv:0911.5004] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C. Eling, I. Fouxon and Y. Oz, Gravity and a geometrization of turbulence: an intriguing correspondence, arXiv:1004.2632.

  28. I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. D.T. Son and A.O. Starinets, Viscosity, black holes, and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Damour and M. Lilley, String theory, gravity and experiment, arXiv:0802.4169 [INSPIRE].

  31. M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. V.E. Hubeny, The fluid/gravity correspondence: a new perspective on the membrane paradigm, Class. Quant. Grav. 28 (2011) 114007 [arXiv:1011.4948] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. S.W. Hawking and J. B. Hartle, Energy and angular momentum flow into a black hole, Commun. Math. Phys. 27 (1972) 283.

    Article  MathSciNet  ADS  Google Scholar 

  34. J.B. Hartle, Tidal friction in slowly rotating black holes, Phys. Rev. D 8 (1973) 1010 [INSPIRE].

    ADS  Google Scholar 

  35. J.B. Hartle, Tidal shapes and shifts on rotating black holes, Phys. Rev. D 9 (1974) 2749 [INSPIRE].

    ADS  Google Scholar 

  36. A. Petrov, Einstein spaces, Pergamon Press, U.K. (1969).

    MATH  Google Scholar 

  37. E. Hertl, C. Hoenselaers, D. Kramer, M. Maccallum and H. Stephani, Exact solutions of Einsteins field equations, Cambridge University Press, Cambridge U.K. (2003).

    Google Scholar 

  38. R. Milson, A. Coley, V. Pravda and A. Pravdova, Alignment and algebraically special tensors in Lorentzian geometry, Int. J. Geom. Meth. Mod. Phys. 2 (2005) 41 [gr-qc/0401010] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Gourgoulhon, Generalized Damour-Navier-Stokes equation applied to trapping horizons, Phys. Rev. D 72 (2005) 104007 [gr-qc/0508003].

    MathSciNet  ADS  Google Scholar 

  40. K.S. Thorne, R.H. Price and D.A. Macdonald, Black holes: the membrane paradigm, Yale University Press, New Haven U.S.A. (1986).

    Google Scholar 

  41. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. O. Saremi, Shear waves, sound waves on a shimmering horizon, hep-th/0703170 [INSPIRE].

  43. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Brustein and A. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [INSPIRE].

    ADS  Google Scholar 

  45. M. Rangamani, S.F. Ross, D. Son and E.G. Thompson, Conformal non-relativistic hydrodynamics from gravity, JHEP 01 (2009) 075 [arXiv:0811.2049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. M. Mia, K. Dasgupta, C. Gale and S. Jeon, Five easy pieces: the dynamics of quarks in strongly coupled plasmas, Nucl. Phys. B 839 (2010) 187 [arXiv:0902.1540] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Google Scholar 

  49. S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [INSPIRE].

  50. V.E. Hubeny and M. Rangamani, A holographic view on physics out of equilibrium, arXiv:1006.3675 [INSPIRE].

  51. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. A.O. Starinets, Quasinormal spectrum and the black hole membrane paradigm, Phys. Lett. B 670 (2009)442 [arXiv:0806.3797] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Keeler.

Additional information

ArXiv ePrint: 1101.2451

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bredberg, I., Keeler, C., Lysov, V. et al. From Navier-Stokes to Einstein. J. High Energ. Phys. 2012, 146 (2012). https://doi.org/10.1007/JHEP07(2012)146

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)146

Keywords

Navigation