Skip to main content

Cold Baryogenesis from first principles in the two-Higgs doublet model with fermions

A preprint version of the article is available at arXiv.

Abstract

We present a first-principles numerical computation of the baryon asymmetry in electroweak-scale baryogenesis. For the scenario of Cold Baryogenesis, we consider a one fermion-family reduced CP-violating two Higgs-doublet model, including a classical SU(2)-gauge/two-Higgs sector coupled to one quantum left-handed fermion doublet and two right-handed singlets. Separately, the C(CP) breaking of the two-Higgs potential and the C and P breaking of the gauge-fermion interactions do not provide a baryon asymmetry. Only when combined does baryogenesis occur. Through large-scale computer simulations, we compute the asymmetry for one particularly favourable scalar potential. The numerical signal is at the boundary of what is numerically discernible with the available computer resources, but we tentatively find an asymmetry of |η| ≤ 3.5 × 10−7.

References

  1. [1]

    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  3. [3]

    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase transition: A nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    P.H. Damgaard, D. O’Connell, T.C. Petersen and A. Tranberg, Constraints on New Physics from Baryogenesis and Large Hadron Collider Data, Phys. Rev. Lett. 111 (2013) 221804 [arXiv:1305.4362] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    G.D. Moore and K. Rummukainen, Electroweak bubble nucleation, nonperturbatively, Phys. Rev. D 63 (2001) 045002 [hep-ph/0009132] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett. 112 (2014) 041301 [arXiv:1304.2433] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition, arXiv:1504.03291 [INSPIRE].

  10. [10]

    T. Brauner, O. Taanila, A. Tranberg and A. Vuorinen, Temperature Dependence of Standard Model CP-violation, Phys. Rev. Lett. 108 (2012) 041601 [arXiv:1110.6818] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    T. Brauner, O. Taanila, A. Tranberg and A. Vuorinen, Computing the temperature dependence of effective CP-violation in the standard model, JHEP 11 (2012) 076 [arXiv:1208.5609] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, First principle derivation of semiclassical force for electroweak baryogenesis, JHEP 06 (2001) 031 [hep-ph/0105295] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order h-bar and electroweak baryogenesis. Part II, Annals Phys. 314 (2004) 267 [hep-ph/0406140] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  14. [14]

    T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order h bar and electroweak baryogenesis. Part 1, Annals Phys. 314 (2004) 208 [hep-ph/0312110] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  15. [15]

    J. García-Bellido, D.Y. Grigoriev, A. Kusenko and M.E. Shaposhnikov, Nonequilibrium electroweak baryogenesis from preheating after inflation, Phys. Rev. D 60 (1999) 123504 [hep-ph/9902449] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    L.M. Krauss and M. Trodden, Baryogenesis below the electroweak scale, Phys. Rev. Lett. 83 (1999) 1502 [hep-ph/9902420] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    E.J. Copeland, D. Lyth, A. Rajantie and M. Trodden, Hybrid inflation and baryogenesis at the TeV scale, Phys. Rev. D 64 (2001) 043506 [hep-ph/0103231] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    A. Rajantie, P.M. Saffin and E.J. Copeland, Numerical simulations of electroweak baryogenesis at preheating, hep-ph/0010347 [INSPIRE].

  19. [19]

    A. Tranberg and J. Smit, Baryon asymmetry from electroweak tachyonic preheating, JHEP 11 (2003) 016 [hep-ph/0310342] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    J. García-Bellido, M. Garcia-Perez and A. Gonzalez-Arroyo, Chern-Simons production during preheating in hybrid inflation models, Phys. Rev. D 69 (2004) 023504 [hep-ph/0304285] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    A. Tranberg and J. Smit, Simulations of cold electroweak baryogenesis: Dependence on Higgs mass and strength of CP-violation, JHEP 08 (2006) 012 [hep-ph/0604263] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    A. Tranberg, J. Smit and M. Hindmarsh, Simulations of cold electroweak baryogenesis: Finite time quenches, JHEP 01 (2007) 034 [hep-ph/0610096] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    A. Tranberg, A. Hernandez, T. Konstandin and M.G. Schmidt, Cold electroweak baryogenesis with Standard Model CP-violation, Phys. Lett. B 690 (2010) 207 [arXiv:0909.4199] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    N. Turok and J. Zadrozny, Dynamical generation of baryons at the electroweak transition, Phys. Rev. Lett. 65 (1990) 2331 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    N. Turok and J. Zadrozny, Electroweak baryogenesis in the two doublet model, Nucl. Phys. B 358 (1991) 471 [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    A. Diaz-Gil, J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Magnetic field production during preheating at the electroweak scale, Phys. Rev. Lett. 100 (2008) 241301 [arXiv:0712.4263] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    A. Tranberg and B. Wu, Cold Electroweak Baryogenesis in the Two Higgs-Doublet Model, JHEP 07 (2012) 087 [arXiv:1203.5012] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    J. Smit, Effective CP-violation in the standard model, JHEP 09 (2004) 067 [hep-ph/0407161] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    L.L. Salcedo, Leading order one-loop CP and P violating effective action in the Standard Model, Phys. Lett. B 700 (2011) 331 [arXiv:1102.2400] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    C. Garcia-Recio and L.L. Salcedo, CP violation in the effective action of the Standard Model, JHEP 07 (2009) 015 [arXiv:0903.5494] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    G. Aarts and J. Smit, Real time dynamics with fermions on a lattice, Nucl. Phys. B 555 (1999) 355 [hep-ph/9812413] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    G. Aarts and J. Smit, Particle production and effective thermalization in inhomogeneous mean field theory, Phys. Rev. D 61 (2000) 025002 [hep-ph/9906538] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    S. Borsányi and M. Hindmarsh, Low-cost fermions in classical field simulations, Phys. Rev. D 79 (2009) 065010 [arXiv:0809.4711] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    Z.-G. Mou, P.M. Saffin and A. Tranberg, Ensemble fermions for electroweak dynamics and the fermion preheating temperature, JHEP 11 (2013) 097 [arXiv:1307.7924] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    P.M. Saffin and A. Tranberg, Dynamical simulations of electroweak baryogenesis with fermions, JHEP 02 (2012) 102 [arXiv:1111.7136] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  36. [36]

    A. Tranberg and B. Wu, On using Cold Baryogenesis to constrain the Two-Higgs Doublet Model, JHEP 01 (2013) 046 [arXiv:1210.1779] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.

    Google Scholar 

  38. [38]

    A.W. El Kaffas, W. Khater, O.M. Ogreid and P. Osland, Consistency of the two Higgs doublet model and CP-violation in top production at the LHC, Nucl. Phys. B 775 (2007) 45 [hep-ph/0605142] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  39. [39]

    M. van der Meulen, D. Sexty, J. Smit and A. Tranberg, Chern-Simons and winding number in a tachyonic electroweak transition, JHEP 02 (2006) 029 [hep-ph/0511080] [INSPIRE].

    Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zong-Gang Mou.

Additional information

ArXiv ePrint: 1505.02692

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mou, ZG., Saffin, P.M. & Tranberg, A. Cold Baryogenesis from first principles in the two-Higgs doublet model with fermions. J. High Energ. Phys. 2015, 163 (2015). https://doi.org/10.1007/JHEP06(2015)163

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • Nonperturbative Effects
  • CP violation
  • Lattice Quantum Field Theory