Skip to main content
Log in

Computing the temperature dependence of effective CP violation in the standard model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

CP violation in the standard model originates from the Cabibbo-Kobayashi-Maskawa mixing matrix. Upon integrating all fermions out of the theory, its effects are captured by a series of effective nonrenormalizable operators for the bosonic gauge and Higgs fields. We compute the CP-violating part of the effective action to the leading nontrivial, sixth order in the covariant gradient expansion as a function of temperature. In the limit of zero temperature, our result addresses the discrepancy between two independent calculations existing in the literature [1, 2]. We find that CP violation in the standard model is strongly suppressed at high temperature, but that at T ≲ 1GeV it may be relevant for certain scenarios of baryogenesis. We also identify a selected class of operators at the next, eighth order and discuss the convergence of the covariant gradient expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hernandez, T. Konstandin and M.G. Schmidt, Sizable CP-violation in the bosonized standard model, Nucl. Phys. B 812 (2009) 290 [arXiv:0810.4092] [INSPIRE].

    Article  ADS  Google Scholar 

  2. C. García-Recio and L.L. Salcedo, CP violation in the effective action of the standard model, JHEP 07 (2009) 015 [arXiv:0903.5494] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. D 18 (1978) 2199] [INSPIRE].

    ADS  Google Scholar 

  4. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    ADS  Google Scholar 

  5. G. Aarts and J. Smit, Real time dynamics with fermions on a lattice, Nucl. Phys. B 555 (1999) 355 [hep-ph/9812413] [INSPIRE].

    Article  ADS  Google Scholar 

  6. P.M. Saffin and A. Tranberg, Real-time fermions for baryogenesis simulations, JHEP 07 (2011) 066 [arXiv:1105.5546] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P.M. Saffin and A. Tranberg, Dynamical simulations of electroweak baryogenesis with fermions, JHEP 02 (2012) 102 [arXiv:1111.7136] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M.E. Shaposhnikov, Structure of the high temperature gauge ground state and electroweak production of the baryon asymmetry, Nucl. Phys. B 299 (1988) 797 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  10. G.R. Farrar and M.E. Shaposhnikov, Baryon asymmetry of the universe in the minimal standard model, Phys. Rev. Lett. 70 (1993) 2833 [Erratum ibid. 71 (1993) 210] [hep-ph/9305274] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G.R. Farrar and M.E. Shaposhnikov, Baryon asymmetry of the universe in the standard electroweak theory, Phys. Rev. D 50 (1994) 774 [hep-ph/9305275] [INSPIRE].

    ADS  Google Scholar 

  12. M.B. Gavela, M. Lozano, J. Orloff and O. Pène, Standard model CP-violation and baryon asymmetry. Part 1: Zero temperature, Nucl. Phys. B 430 (1994) 345 [hep-ph/9406288] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Gavela, P. Hernández, J. Orloff, O. Pène and C. Quimbay, Standard model CP-violation and baryon asymmetry. Part 2: Finite temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Smit, Effective CP-violation in the standard model, JHEP 09 (2004) 067 [hep-ph/0407161] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. García-Bellido, D.Y. Grigoriev, A. Kusenko and M.E. Shaposhnikov, Nonequilibrium electroweak baryogenesis from preheating after inflation, Phys. Rev. D 60 (1999) 123504 [hep-ph/9902449] [INSPIRE].

    ADS  Google Scholar 

  17. L.M. Krauss and M. Trodden, Baryogenesis below the electroweak scale, Phys. Rev. Lett. 83 (1999) 1502 [hep-ph/9902420] [INSPIRE].

    Article  ADS  Google Scholar 

  18. E.J. Copeland, D. Lyth, A. Rajantie and M. Trodden, Hybrid inflation and baryogenesis at the TeV scale, Phys. Rev. D 64 (2001) 043506 [hep-ph/0103231] [INSPIRE].

    ADS  Google Scholar 

  19. A. Tranberg and J. Smit, Baryon asymmetry from electroweak tachyonic preheating, JHEP 11 (2003) 016 [hep-ph/0310342] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. T. Brauner, O. Taanila, A. Tranberg and A. Vuorinen, Temperature dependence of standard model CP-violation, Phys. Rev. Lett. 108 (2012) 041601 [arXiv:1110.6818] [INSPIRE].

    Article  ADS  Google Scholar 

  21. L.L. Salcedo, Derivative expansion for the effective action of chiral gauge fermions. The abnormal parity component, Eur. Phys. J. C 20 (2001) 161 [hep-th/0012174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. L.L. Salcedo, Derivative expansion for the effective action of chiral gauge fermions. The normal parity component, Eur. Phys. J. C 20 (2001) 147 [hep-th/0012166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. L.L. Salcedo, Leading order one-loop CP and P violating effective action in the standard model, Phys. Lett. B 700 (2011) 331 [arXiv:1102.2400] [INSPIRE].

    ADS  Google Scholar 

  24. E. Megías, E. Ruiz Arriola and L.L. Salcedo, The thermal heat kernel expansion and the one loop effective action of QCD at finite temperature, Phys. Rev. D 69 (2004) 116003 [hep-ph/0312133] [INSPIRE].

    ADS  Google Scholar 

  25. F.J. Moral-Gámez and L.L. Salcedo, Derivative expansion of the heat kernel at finite temperature, Phys. Rev. D 85 (2012) 045019 [arXiv:1110.6300] [INSPIRE].

    ADS  Google Scholar 

  26. R. Mertig, M. Böhm and A. Denner, Feyn Calc: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Tranberg, J. Smit and M. Hindmarsh, Simulations of cold electroweak baryogenesis: finite time quenches, JHEP 01 (2007) 034 [hep-ph/0610096] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.-I. Skullerud, J. Smit and A. Tranberg, W and Higgs particle distributions during electroweak tachyonic preheating, JHEP 08 (2003) 045 [hep-ph/0307094] [INSPIRE].

    Article  ADS  Google Scholar 

  29. B.J.W. van Tent, J. Smit and A. Tranberg, Electroweak scale inflation, inflaton Higgs mixing and the scalar spectral index, JCAP 07 (2004) 003 [hep-ph/0404128] [INSPIRE].

    Article  Google Scholar 

  30. K. Enqvist, P. Stephens, O. Taanila and A. Tranberg, Fast electroweak symmetry breaking and cold electroweak baryogenesis, JCAP 09 (2010) 019 [arXiv:1005.0752] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Konstandin and G. Servant, Natural cold baryogenesis from strongly interacting electroweak symmetry breaking, JCAP 07 (2011) 024 [arXiv:1104.4793] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Birrell and J. Rafelski, Possibility of electroweak phase transition at low temperature, arXiv:1205.1011 [INSPIRE].

  33. A. Tranberg and J. Smit, Simulations of cold electroweak baryogenesis: dependence on Higgs mass and strength of CP-violation, JHEP 08 (2006) 012 [hep-ph/0604263] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Tranberg, A. Hernandez, T. Konstandin and M.G. Schmidt, Cold electroweak baryogenesis with standard model CP-violation, Phys. Lett. B 690 (2010) 207 [arXiv:0909.4199] [INSPIRE].

    ADS  Google Scholar 

  35. A. Tranberg, Standard model CP-violation and cold electroweak baryogenesis, Phys. Rev. D 84 (2011) 083516 [arXiv:1009.2358] [INSPIRE].

    ADS  Google Scholar 

  36. A. Tranberg and B. Wu, Cold electroweak baryogenesis in the two Higgs-doublet model, JHEP 07 (2012) 087 [arXiv:1203.5012] [INSPIRE].

    Article  ADS  Google Scholar 

  37. N. Turok and J. Zadrozny, Electroweak baryogenesis in the two doublet model, Nucl. Phys. B 358 (1991) 471 [INSPIRE].

    Article  ADS  Google Scholar 

  38. R.I. Nepomechie, Calculating heat kernels, Phys. Rev. D 31 (1985) 3291 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. N.G. Pletnev and A.T. Banin, Covariant technique of derivative expansion of one loop effective action, Phys. Rev. D 60 (1999) 105017 [hep-th/9811031] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Brauner.

Additional information

ArXiv ePrint: 1208.5609

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brauner, T., Taanila, O., Tranberg, A. et al. Computing the temperature dependence of effective CP violation in the standard model. J. High Energ. Phys. 2012, 76 (2012). https://doi.org/10.1007/JHEP11(2012)076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)076

Keywords

Navigation