Charmonium spectral functions from 2+1 flavour lattice QCD

  • Szabolcs Borsányi
  • Stephan Dürr
  • Zoltán Fodor
  • Christian Hoelbling
  • Sándor D. Katz
  • Stefan Krieg
  • Simon Mages
  • Dániel Nógrádi
  • Attila Pásztor
  • Andreas Schäfer
  • Kálmán K. Szabó
  • Bálint C. Tóth
  • Norbert Trombitás
Open Access


Finite temperature charmonium spectral functions in the pseudoscalar and vector channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057fm), with a non-physical pion mass of m π ≈ 545 MeV. The highest temperature studied is approximately 1.4T c . Up to this temperature no significant variation of the spectral function is seen in the pseudoscalar channel. The vector channel shows some temperature dependence, which seems to be consistent with a temperature dependent low frequency peak related to heavy quark transport, plus a temperature independent term at ω > 0. These results are in accord with previous calculations using the quenched approximation.


Lattice QCD Phase Diagram of QCD 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D.J. Schwarz, The first second of the universe, Annalen Phys. 12 (2003) 220 [astro-ph/0303574] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y. Aoki, Z. Fodor, S.D. Katz and K.K. Szabo, The equation of state in lattice QCD: With physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II., JHEP 06 (2009) 088 [arXiv:0903.4155] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S. Borsányi, Z. Fodor, S.D. Katz, S. Krieg, C. Ratti and K. Szabó, Fluctuations of conserved charges at finite temperature from lattice QCD, JHEP 01 (2012) 138 [arXiv:1112.4416] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    HotQCD collaboration, A. Bazavov et al., Fluctuations and Correlations of net baryon number, electric charge and strangeness: A comparison of lattice QCD results with the hadron resonance gas model, Phys. Rev. D 86 (2012) 034509 [arXiv:1203.0784] [INSPIRE].ADSGoogle Scholar
  9. [9]
    T. Umeda et al., Fixed Scale Approach to Equation of State in Lattice QCD, Phys. Rev. D 79 (2009) 051501 [arXiv:0809.2842] [INSPIRE].ADSGoogle Scholar
  10. [10]
    WHOT-QCD collaboration, S. Ejiri et al., Equation of State and Heavy-Quark Free Energy at Finite Temperature and Density in Two Flavor Lattice QCD with Wilson Quark Action, Phys. Rev. D 82 (2010) 014508 [arXiv:0909.2121] [INSPIRE].ADSGoogle Scholar
  11. [11]
    WHOT-QCD collaboration, Y. Maezawa et al., Free energies of heavy quarks in full-QCD lattice simulations with Wilson-type quark action, Nucl. Phys. A 830 (2009) 247C-250C [arXiv:0907.4203] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V.G. Bornyakov et al., Probing the finite temperature phase transition with N(f) = 2 nonperturbatively improved Wilson fermions, Phys. Rev. D 82 (2010) 014504 [arXiv:0910.2392] [INSPIRE].ADSGoogle Scholar
  13. [13]
    WHOT-QCD collaboration, T. Umeda et al., EOS in 2 + 1 flavor QCD with improved Wilson quarks by the fixed-scale approach, PoS(Lattice 2010)218 [arXiv:1011.2548] [INSPIRE].
  14. [14]
    Y. Maezawa et al., Application of fixed scale approach to static quark free energies in quenched and 2 + 1 flavor lattice QCD with improved Wilson quark action, Prog. Theor. Phys. 128 (2012) 955 [arXiv:1112.2756] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    WHOT-QCD collaboration, T. Umeda et al., Equation of state in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach, Phys. Rev. D 85 (2012) 094508 [arXiv:1202.4719] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Borsányi et al., QCD thermodynamics with continuum extrapolated Wilson fermions I, JHEP 08 (2012) 126 [arXiv:1205.0440] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Dürr et al., Ab-Initio Determination of Light Hadron Masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Matsui and H. Satz, J/ψ Suppression by quark-gluon Plasma Formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Le Bellac, Thermal Field Theory, Cambridge University Press, (1996).Google Scholar
  20. [20]
    M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Aarts and J.M. Martinez Resco, Transport coefficients, spectral functions and the lattice, JHEP 04 (2002) 053 [hep-ph/0203177] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R.K. Bryan, Maximum-entropy analysis of oversampled data problems, Eur. Biophys J. 18 (1990) 165.CrossRefMathSciNetGoogle Scholar
  23. [23]
    A. Jakovác, P. Petreczky, K. Petrov and A. Velytsky, Quarkonium correlators and spectral functions at zero and finite temperature, Phys. Rev. D 75 (2007) 014506 [hep-lat/0611017] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Umeda, A Constant contribution in meson correlators at finite temperature, Phys. Rev. D 75 (2007) 094502 [hep-lat/0701005] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Rothkopf, Improved Maximum Entropy Analysis with an Extended Search Space, J. Comput. Phys. 238 (2013) 106 [arXiv:1110.6285] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Spectral functions at small energies and the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99 (2007) 022002 [hep-lat/0703008] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Engels and O. Vogt, Longitudinal and transverse spectral functions in the three-dimensional O(4) model, Nucl. Phys. B 832 (2010) 538 [arXiv:0911.1939] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Umeda, K. Nomura and H. Matsufuru, Charmonium at finite temperature in quenched lattice QCD, Eur. Phys. J. C 39S1 (2005) 9 [hep-lat/0211003] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Asakawa and T. Hatsuda, J/ψ and η(c) in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92 (2004) 012001 [hep-lat/0308034] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Aarts, C. Allton, M.B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76 (2007) 094513 [arXiv:0705.2198] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Kelly, J.-I. Skullerud, C. Allton, D. Mehta and M.B. Oktay, Spectral functions of charmonium from 2 flavour anisotropic lattice data, arXiv:1312.0791 [INSPIRE].
  32. [32]
    H. Iida, T. Doi, N. Ishii, H. Suganuma and K. Tsumura, Charmonium properties in deconfinement phase in anisotropic lattice QCD, Phys. Rev. D 74 (2006) 074502 [hep-lat/0602008] [INSPIRE].ADSGoogle Scholar
  33. [33]
    WHOT-QCD collaboration, H. Ohno et al., Charmonium spectral functions with the variational method in zero and finite temperature lattice QCD, Phys. Rev. D 84 (2011) 094504 [arXiv:1104.3384] [INSPIRE].ADSGoogle Scholar
  34. [34]
    H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz and W. Soeldner, Charmonium properties in hot quenched lattice QCD, Phys. Rev. D 86 (2012) 014509 [arXiv:1204.4945] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Aarts et al., Charmonium spectral functions in two-flavour QCD, Nucl. Phys. A 785 (2007) 198 [hep-lat/0608009] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands J.-I. Skullerud, Electrical conductivity of the quark-gluon plasma across the deconfinement transition, Phys. Rev. Lett. 111 (2013) 172001 [arXiv:1307.6763] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Aarts, C. Allton, S. Kim, M.P. Lombardo, S.M. Ryan J.-I. Skullerud, Melting of P wave bottomonium states in the quark-gluon plasma from lattice NRQCD, JHEP 12 (2013) 064 [arXiv:1310.5467] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 1. Principles and Φ4 Theory, Nucl. Phys. B 226 (1983) 187 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    M. Lüscher and P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math. Phys. 97 (1985) 59 [Erratum ibid. 98 (1985) 433] [INSPIRE].
  40. [40]
    B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD with Wilson Fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].ADSGoogle Scholar
  42. [42]
    R. Hoffmann, A. Hasenfratz and S. Schaefer, Non-perturbative improvement of nHYP smeared Wilson fermions, PoS(LATTICE 2007)104 [arXiv:0710.0471] [INSPIRE].
  43. [43]
    S. Capitani, S. Dürr and C. Hölbling, Rationale for UV-filtered clover fermions, JHEP 11 (2006) 028 [hep-lat/0607006] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Dürr et al., Scaling study of dynamical smeared-link clover fermions, Phys. Rev. D 79 (2009) 014501 [arXiv:0802.2706] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M.A. Clark and A.D. Kennedy, Accelerating dynamical fermion computations using the rational hybrid Monte Carlo (RHMC) algorithm with multiple pseudofermion fields, Phys. Rev. Lett. 98 (2007) 051601 [hep-lat/0608015] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J.C. Sexton and D.H. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380 (1992) 665 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Takaishi and P. de Forcrand, Testing and tuning new symplectic integrators for hybrid Monte Carlo algorithm in lattice QCD, Phys. Rev. E 73 (2006) 036706 [hep-lat/0505020] [INSPIRE].ADSGoogle Scholar
  49. [49]
    T.A. DeGrand, A Conditioning Technique for Matrix Inversion for Wilson Fermions, Comput. Phys. Commun. 52 (1988) 161 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C.T.H. Davies et al., Precise Charm to Strange Mass Ratio and Light Quark Masses from Full Lattice QCD, Phys. Rev. Lett. 104 (2010) 132003 [arXiv:0910.3102] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Dürr et al., Lattice QCD at the physical point: light quark masses, Phys. Lett. B 701 (2011) 265 [arXiv:1011.2403] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Dürr et al., Lattice QCD at the physical point: Simulation and analysis details, JHEP 08 (2011) 148 [arXiv:1011.2711] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Borsányi et al., Anisotropy tuning with the Wilson flow, arXiv:1205.0781 [INSPIRE].
  54. [54]
    G.I. Egri et al., Lattice QCD as a video game, Comput. Phys. Commun. 177 (2007) 631 [hep-lat/0611022] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Karsch, E. Laermann, P. Petreczky and S. Stickan, Infinite temperature limit of meson spectral functions calculated on the lattice, Phys. Rev. D 68 (2003) 014504 [hep-lat/0303017] [INSPIRE].ADSGoogle Scholar
  56. [56]
    G. Aarts and J.M. Martinez Resco, Continuum and lattice meson spectral functions at nonzero momentum and high temperature, Nucl. Phys. B 726 (2005) 93 [hep-lat/0507004] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Szabolcs Borsányi
    • 1
  • Stephan Dürr
    • 1
    • 2
  • Zoltán Fodor
    • 1
    • 2
    • 3
  • Christian Hoelbling
    • 1
  • Sándor D. Katz
    • 3
    • 4
  • Stefan Krieg
    • 1
    • 2
  • Simon Mages
    • 5
  • Dániel Nógrádi
    • 3
    • 4
  • Attila Pásztor
    • 3
    • 4
  • Andreas Schäfer
    • 5
  • Kálmán K. Szabó
    • 1
    • 2
  • Bálint C. Tóth
    • 1
  • Norbert Trombitás
    • 3
    • 4
  1. 1.University of Wuppertal, Department of PhysicsWuppertalGermany
  2. 2.Jülich Supercomputing CenterJülichGermany
  3. 3.Eötvös UniversityBudapestHungary
  4. 4.MTA-ELTE Lendület Lattice Gauge Theory Research GroupBudapestHungary
  5. 5.University of RegensburgRegensburgGermany

Personalised recommendations