Skip to main content

Strong Cosmic Censorship in higher-dimensional Reissner-Nordström-de Sitter spacetime

A preprint version of the article is available at arXiv.

Abstract

: It was recently shown that Strong Cosmic Censorship might be violated for near-extremally-charged black holes in 4-dimensional de Sitter space under scalar perturbations. Here, we extend the study of neutral massless scalar perturbations in higher dimensions and discuss the dimensional influence on the validity of Strong Cosmic Censorship hypothesis. By giving an elaborate description of neutral massless scalar perturbations of Reissner-Nordström-de Sitter black holes in d = 4, 5 and 6 dimensions we conclude that Strong Cosmic Censorship is violated near extremality.

References

  1. [1]

    M. Simpson and R. Penrose, Internal instability in a Reissner-Nordstrom black hole, Int. J. Theor. Phys. 7 (1973) 183 [INSPIRE].

    Article  Google Scholar 

  2. [2]

    S. Chandrasekhar and J.B. Hartle, On crossing the cauchy horizon of a Reissner-Nordstrom black-hole, Proc. Roy. Soc. Lond. A 384 (1982) 301.

  3. [3]

    E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev. D 41 (1990) 1796 [INSPIRE].

  4. [4]

    R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations, Phys. Rev. D 5 (1972) 2419 [INSPIRE].

  5. [5]

    R.H. Price, Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields, Phys. Rev. D 5 (1972) 2439 [INSPIRE].

  6. [6]

    P.R. Brady, C.M. Chambers, W. Krivan and P. Laguna, Telling tails in the presence of a cosmological constant, Phys. Rev. D 55 (1997) 7538 [gr-qc/9611056] [INSPIRE].

  7. [7]

    P.R. Brady, C.M. Chambers, W.G. Laarakkers and E. Poisson, Radiative falloff in Schwarzschild-de Sitter space-time, Phys. Rev. D 60 (1999) 064003 [gr-qc/9902010] [INSPIRE].

  8. [8]

    C. Molina, D. Giugno, E. Abdalla and A. Saa, Field propagation in de Sitter black holes, Phys. Rev. D 69 (2004) 104013 [gr-qc/0309079] [INSPIRE].

  9. [9]

    E. Abdalla, B. Wang, A. Lima-Santos and W.G. Qiu, Support of dS/CFT correspondence from perturbations of three-dimensional space-time, Phys. Lett. B 538 (2002) 435 [hep-th/0204030] [INSPIRE].

  10. [10]

    D.-P. Du, B. Wang and R.-K. Su, Quasinormal modes in pure de Sitter space-times, Phys. Rev. D 70 (2004) 064024 [hep-th/0404047] [INSPIRE].

  11. [11]

    D. Christodoulou, The Formation of Black Holes in General Relativity, in On recent developments in theoretical and experimental general relativity, astrophysics and relativistic field theories. Proceedings, 12th Marcel Grossmann Meeting on General Relativity, Paris, France, July 12-18, 2009, Vol. 1-3, pp. 24-34 (2008) [https://doi.org/10.1142/9789814374552_0002] [arXiv:0805.3880] [INSPIRE].

  12. [12]

    K. Maeda, T. Torii and M. Narita, String excitation inside generic black holes, Phys. Rev. D 61 (2000) 024020 [gr-qc/9908007] [INSPIRE].

  13. [13]

    M. Dafermos, Black holes without spacelike singularities, Commun. Math. Phys. 332 (2014) 729 [arXiv:1201.1797] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    J.L. Costa, P.M. Girão, J. Natário and J.D. Silva, On the global uniqueness for the Einstein-Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion, Class. Quant. Grav. 32 (2015) 015017 [arXiv:1406.7245] [INSPIRE].

  15. [15]

    J.L. Costa, P.M. Girão, J. Natário and J.D. Silva, On the global uniqueness for the Einstein-Maxwell-scalar field system with a cosmological constant, Commun. Math. Phys. 339 (2015) 903 [arXiv:1406.7253] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  16. [16]

    J.L. Costa, P.M. Girão, J. Natário and J.D. Silva, On the global uniqueness for the Einstein-Maxwell-scalar field system with a cosmological constant. Part 3: Mass inflation and extendibility of the solutions, arXiv:1406.7261 [INSPIRE].

  17. [17]

    P. Hintz and A. Vasy, Analysis of linear waves near the Cauchy horizon of cosmological black holes, J. Math. Phys. 58 (2017) 081509 [arXiv:1512.08004] [INSPIRE].

  18. [18]

    P. Hintz and A. Vasy, The global non-linear stability of the Kerr-de Sitter family of black holes, arXiv:1606.04014 [INSPIRE].

  19. [19]

    P. Hintz, Non-linear stability of the Kerr-Newman-de Sitter family of charged black holes, arXiv:1612.04489 [INSPIRE].

  20. [20]

    V. Cardoso, J.L. Costa, K. Destounis, P. Hintz and A. Jansen, Quasinormal modes and Strong Cosmic Censorship, Phys. Rev. Lett. 120 (2018) 031103 [arXiv:1711.10502] [INSPIRE].

  21. [21]

    O.J.C. Dias, H.S. Reall and J.E. Santos, Strong cosmic censorship: taking the rough with the smooth, JHEP 10 (2018) 001 [arXiv:1808.02895] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    S. Hod, Strong cosmic censorship in charged black-hole spacetimes: As strong as ever, Nucl. Phys. B 941 (2019) 636 [arXiv:1801.07261] [INSPIRE].

  23. [23]

    V. Cardoso, J.L. Costa, K. Destounis, P. Hintz and A. Jansen, Strong cosmic censorship in charged black-hole spacetimes: still subtle, Phys. Rev. D 98 (2018) 104007 [arXiv:1808.03631] [INSPIRE].

  24. [24]

    Y. Mo, Y. Tian, B. Wang, H. Zhang and Z. Zhong, Strong cosmic censorship for the massless charged scalar field in the Reissner-Nordstrom-de Sitter spacetime, Phys. Rev. D 98 (2018) 124025 [arXiv:1808.03635] [INSPIRE].

  25. [25]

    O.J.C. Dias, H.S. Reall and J.E. Santos, Strong cosmic censorship for charged de Sitter black holes with a charged scalar field, Class. Quant. Grav. 36 (2019) 045005 [arXiv:1808.04832] [INSPIRE].

  26. [26]

    B. Ge, J. Jiang, B. Wang, H. Zhang and Z. Zhong, Strong cosmic censorship for the massless Dirac field in the Reissner-Nordstrom-de Sitter spacetime, JHEP 01 (2019) 123 [arXiv:1810.12128] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  27. [27]

    K. Destounis, Charged Fermions and Strong Cosmic Censorship, arXiv:1811.10629 [INSPIRE].

  28. [28]

    R. Luna, M. Zilhão, V. Cardoso, J.L. Costa and J. Natário, Strong Cosmic Censorship: the nonlinear story, Phys. Rev. D 99 (2019) 064014 [arXiv:1810.00886] [INSPIRE].

  29. [29]

    B. Gwak, Strong Cosmic Censorship under Quasinormal Modes of Non-Minimally Coupled Massive Scalar Field, arXiv:1812.04923 [INSPIRE].

  30. [30]

    O.J.C. Dias, F.C. Eperon, H.S. Reall and J.E. Santos, Strong cosmic censorship in de Sitter space, Phys. Rev. D 97 (2018) 104060 [arXiv:1801.09694] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. [31]

    R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    R. Gregory and R. Laflamme, The Instability of charged black strings and p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071] [INSPIRE].

  33. [33]

    R.A. Konoplya and A. Zhidenko, (In)stability of D-dimensional black holes in Gauss-Bonnet theory, Phys. Rev. D 77 (2008) 104004 [arXiv:0802.0267] [INSPIRE].

  34. [34]

    M. Beroiz, G. Dotti and R.J. Gleiser, Gravitational instability of static spherically symmetric Einstein-Gauss-Bonnet black holes in five and six dimensions, Phys. Rev. D 76 (2007) 024012 [hep-th/0703074] [INSPIRE].

  35. [35]

    R.A. Konoplya and A. Zhidenko, Instability of higher dimensional charged black holes in the de-Sitter world, Phys. Rev. Lett. 103 (2009) 161101 [arXiv:0809.2822] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    V. Cardoso, M. Lemos and M. Marques, On the instability of Reissner-Nordstrom black holes in de Sitter backgrounds, Phys. Rev. D 80 (2009) 127502 [arXiv:1001.0019] [INSPIRE].

  37. [37]

    M.D. Mkenyeleye, R. Goswami and S.D. Maharaj, Is cosmic censorship restored in higher dimensions?, Phys. Rev. D 92 (2015) 024041 [arXiv:1503.06651] [INSPIRE].

  38. [38]

    M. Chabab, H. El Moumni, S. Iraoui and K. Masmar, Behavior of quasinormal modes and high dimension RN-AdS black hole phase transition, Eur. Phys. J. C 76 (2016) 676 [arXiv:1606.08524] [INSPIRE].

  39. [39]

    E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    T. Regge and J.A. Wheeler, Stability of a Schwarzschild singularity, Phys. Rev. 108 (1957) 1063 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    F.J. Zerilli, Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics, Phys. Rev. D 2 (1970) 2141 [INSPIRE].

  42. [42]

    F.J. Zerilli, Perturbation analysis for gravitational and electromagnetic radiation in a Reissner-Nordström geometry, Phys. Rev. D 9 (1974) 860 [INSPIRE].

  43. [43]

    A. Jansen, Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes, Eur. Phys. J. Plus 132 (2017) 546 [arXiv:1709.09178] [INSPIRE].

    Article  Google Scholar 

  44. [44]

    H. Ciftci, Anharmonic oscillator energies by the asymptotic iteration method, Mod. Phys. Lett. A 23 (2008) 261 [INSPIRE].

  45. [45]

    H.T. Cho, A.S. Cornell, J. Doukas, T.R. Huang and W. Naylor, A New Approach to Black Hole Quasinormal Modes: A Review of the Asymptotic Iteration Method, Adv. Math. Phys. 2012 (2012) 281705 [arXiv:1111.5024] [INSPIRE].

  46. [46]

    S. Iyer and C.M. Will, Black Hole Normal Modes: A WKB Approach. 1. Foundations and Application of a Higher Order WKB Analysis of Potential Barrier Scattering, Phys. Rev. D 35 (1987) 3621 [INSPIRE].

  47. [47]

    K. Lin and W.-L. Qian, A non grid-based interpolation scheme for the eigenvalue problem, arXiv:1609.05948.

  48. [48]

    A. Lopez-Ortega, Quasinormal modes of D-dimensional de Sitter spacetime, Gen. Rel. Grav. 38 (2006) 1565 [gr-qc/0605027] [INSPIRE].

  49. [49]

    M. Zhang, J. Jiang and Z. Zhong, The longlived charged massive scalar field in the higher-dimensional Reissner-Nordström spacetime, Phys. Lett. B 789 (2019) 13 [arXiv:1811.04183] [INSPIRE].

  50. [50]

    S. Klainerman, I. Rodnianski and J. Szeftel, The Bounded L2 Curvature Conjecture, arXiv:1204.1767 [INSPIRE].

  51. [51]

    A. Ori, Inner structure of a charged black hole: An exact mass-inflation solution, Phys. Rev. Lett. 67 (1991) 789 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. [52]

    M. Rahman, S. Chakraborty, S. SenGupta and A.A. Sen, Fate of Strong Cosmic Censorship Conjecture in Presence of Higher Spacetime Dimensions, arXiv:1811.08538 [INSPIRE].

  53. [53]

    V. Cardoso, A.S. Miranda, E. Berti, H. Witek and V.T. Zanchin, Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev. D 79 (2009) 064016 [arXiv:0812.1806] [INSPIRE].

  54. [54]

    S. Hod, Quasi-bound state resonances of charged massive scalar fields in the near-extremal Reissner-Nordström black-hole spacetime, Eur. Phys. J. C 77 (2017) 351 [arXiv:1705.04726] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyriakos Destounis.

Additional information

ArXiv ePrint: 1902.01865

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Tang, Z., Destounis, K. et al. Strong Cosmic Censorship in higher-dimensional Reissner-Nordström-de Sitter spacetime. J. High Energ. Phys. 2019, 187 (2019). https://doi.org/10.1007/JHEP03(2019)187

Download citation

Keywords

  • Black Holes
  • Classical Theories of Gravity
  • Spacetime Singularities