Advertisement

Four-loop photon quark form factor and cusp anomalous dimension in the large-N c limit of QCD

  • Johannes Henn
  • Roman N. Lee
  • Alexander V. Smirnov
  • Vladimir A. Smirnov
  • Matthias Steinhauser
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the four-loop QCD corrections to the massless quark-anti-quark-photon form factor F q in the large-N c limit. From the pole part we extract analytic expressions for the corresponding cusp and collinear anomalous dimensions.

Keywords

Perturbative QCD Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.H. Mueller, Asymptotic behavior of the Sudakov form factor, Phys. Rev. D 20 (1979) 2037 [INSPIRE].ADSGoogle Scholar
  2. [2]
    J.C. Collins, Algorithm to compute corrections to the Sudakov form factor, Phys. Rev. D 22 (1980) 1478 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A. Sen, Asymptotic behavior of the Sudakov form factor in quantum chromodynamics, Phys. Rev. D 24 (1981) 3281 [INSPIRE].ADSGoogle Scholar
  4. [4]
    L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form factor in QCD, Phys. Rev. D 42 (1990) 4222 [INSPIRE].ADSGoogle Scholar
  5. [5]
    G.P. Korchemsky and A.V. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].
  6. [6]
    I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G.F. Sterman and M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [INSPIRE].
  8. [8]
    G. Kramer and B. Lampe, Two jet cross-section in e + e annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. C 42 (1989) 504] [INSPIRE].
  9. [9]
    T. Matsuura and W.L. van Neerven, Second order logarithmic corrections to the Drell-Yan cross-section, Z. Phys. C 38 (1988) 623 [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [INSPIRE].
  12. [12]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    R.N. Lee and V.A. Smirnov, Analytic epsilon expansion of three-loop on-shell master integrals up to four-loop transcendentality weight, JHEP 02 (2011) 102 [arXiv:1010.1334] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, The quark and gluon form factors to three loops in QCD through to \( \mathcal{O}\left({\upepsilon}^2\right) \), JHEP 11 (2010) 102 [arXiv:1010.4478] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    J.M. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, A planar four-loop form factor and cusp anomalous dimension in QCD, JHEP 05 (2016) 066 [arXiv:1604.03126] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors to four-loop order in QCD: the N f3 contributions, Phys. Rev. D 95 (2017) 034030 [arXiv:1611.00795] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Davies, A. Vogt, B. Ruijl, T. Ueda and J.A.M. Vermaseren, Large-n f contributions to the four-loop splitting functions in QCD, Nucl. Phys. B 915 (2017) 335 [arXiv:1610.07477] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    R. Boels, B.A. Kniehl and G. Yang, Master integrals for the four-loop Sudakov form factor, Nucl. Phys. B 902 (2016) 387 [arXiv:1508.03717] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  22. [22]
    R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of \( \mathcal{O}\left(\alpha {\alpha}_s\right) \) to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].
  23. [23]
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, hep-ph/9905298 [INSPIRE].
  24. [24]
    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  28. [28]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  29. [29]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, to appear.Google Scholar
  31. [31]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Mastrolia et al., Magnus and Dyson series for master integrals, PoS(LL2014)007 [INSPIRE].
  35. [35]
    C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical form, arXiv:1611.01087 [INSPIRE].
  36. [36]
    R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    O. Gituliar and V. Magerya, Fuchsia and master integrals for splitting functions from differential equations in QCD, PoS(LL2016)030 [arXiv:1607.00759] [INSPIRE].
  38. [38]
    R.N. Lee and V.A. Smirnov, Evaluating the last missing ingredient for the three-loop quark static potential by differential equations, JHEP 10 (2016) 089 [arXiv:1608.02605] [INSPIRE].ADSGoogle Scholar
  39. [39]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  40. [40]
    P.A. Baikov and K.G. Chetyrkin, Four loop massless propagators: an algebraic evaluation of all master integrals, Nucl. Phys. B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master integrals for four-loop massless propagators up to weight twelve, Nucl. Phys. B 856 (2012) 95 [arXiv:1108.0732] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A.V. Smirnov and M. Tentyukov, Four-loop massless propagators: a numerical evaluation of all master integrals, Nucl. Phys. B 837 (2010) 40 [arXiv:1004.1149] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].
  44. [44]
    W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. XIV, Interscience Publishers John Wiley & Sons Inc., New York-London-Sydney (1965).Google Scholar
  45. [45]
    T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 11 (2013) 024] [arXiv:0903.1126] [INSPIRE].
  46. [46]
    Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, Four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [INSPIRE].
  48. [48]
    A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three-loop universal anomalous dimension of the Wilson operators in \( \mathcal{N} \) = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Johannes Henn
    • 1
  • Roman N. Lee
    • 2
    • 5
  • Alexander V. Smirnov
    • 3
  • Vladimir A. Smirnov
    • 4
    • 5
  • Matthias Steinhauser
    • 5
  1. 1.PRISMA Cluster of ExcellenceJohannes Gutenberg UniversityMainzGermany
  2. 2.Budker Institute of Nuclear PhysicsNovosibirskRussia
  3. 3.Research Computing CenterMoscow State UniversityMoscowRussia
  4. 4.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia
  5. 5.Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations