Advertisement

The light bound states of supersymmetric SU(2) Yang-Mills theory

  • Georg Bergner
  • Pietro Giudice
  • Gernot Münster
  • Istvan Montvay
  • Stefano Piemonte
Open Access
Regular Article - Theoretical Physics

Abstract

Supersymmetry provides a well-established theoretical framework for extensions of the standard model of particle physics and the general understanding of quantum field theories. We summarise here our investigations of \( \mathcal{N}=1 \) supersymmetric Yang-Mills theory with SU(2) gauge symmetry using the non-perturbative first-principles method of numerical lattice simulations. The strong interactions of gluons and their superpartners, the gluinos, lead to confinement, and a spectrum of bound states including glueballs, mesons, and gluino-glueballs emerges at low energies. For unbroken supersymmetry these particles have to be arranged in supermultiplets of equal masses. In lattice simulations supersymmetry can only be recovered in the continuum limit since it is explicitly broken by the discretisation. We present the first continuum extrapolation of the mass spectrum of supersymmetric Yang-Mills theory. The results are consistent with the formation of super-multiplets and the absence of non-perturbative sources of supersymmetry breaking. Our investigations also indicate that numerical lattice simulations can be applied to non-trivial supersymmetric theories.

Keywords

Lattice Quantum Field Theory Supersymmetric gauge theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Amati, K. Konishi, Y. Meurice, G.C. Rossi and G. Veneziano, Nonperturbative aspects in supersymmetric gauge theories, Phys. Rept. 162 (1988) 169 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    G. Veneziano and S. Yankielowicz, An effective lagrangian for the pure N = 1 supersymmetric Yang-Mills theory, Phys. Lett. B 113 (1982) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G.R. Farrar, G. Gabadadze and M. Schwetz, On the effective action of N = 1 supersymmetric Yang-Mills theory, Phys. Rev. D 58 (1998) 015009 [hep-th/9711166] [INSPIRE].ADSGoogle Scholar
  4. [4]
    G.R. Farrar, G. Gabadadze and M. Schwetz, The spectrum of softly broken N = 1 supersymmetric Yang-Mills theory, Phys. Rev. D 60 (1999) 035002 [hep-th/9806204] [INSPIRE].ADSGoogle Scholar
  5. [5]
    L. Bergamin and P. Minkowski, SUSY glue balls, dynamical symmetry breaking and nonholomorphic potentials, hep-th/0301155 [INSPIRE].
  6. [6]
    C. McNeile, Lattice status of gluonia/glueballs, Nucl. Phys. Proc. Suppl. 186 (2009) 264 [arXiv:0809.2561] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Bergner, Complete supersymmetry on the lattice and a No-Go theorem, JHEP 01 (2010) 024 [arXiv:0909.4791] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    K. Demmouche et al., Simulation of 4D N = 1 supersymmetric Yang-Mills theory with Symanzik improved gauge action and stout smearing, Eur. Phys. J. C 69 (2010) 147 [arXiv:1003.2073] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Bergner, G. Münster, D. Sandbrink, U.D. Özugurel and I. Montvay, Supersymmetric Yang-Mills theory: a step towards the continuum, arXiv:1111.3012 [INSPIRE].
  10. [10]
    G. Bergner et al., The gluino-glue particle and finite size effects in supersymmetric Yang-Mills theory, JHEP 09 (2012) 108 [arXiv:1206.2341] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G. Bergner, I. Montvay, G. Münster, D. Sandbrink and U.D. Ozugurel, The gluino-glue particle and relevant scales for the simulations of supersymmetric Yang-Mills theory, PoS(LATTICE 2012)042 [arXiv:1210.7767] [INSPIRE].
  12. [12]
    G. Bergner, I. Montvay, G. Münster, U.D. Özugurel and D. Sandbrink, Towards the spectrum of low-lying particles in supersymmetric Yang-Mills theory, JHEP 11 (2013) 061 [arXiv:1304.2168] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    G. Bergner, P. Giudice, G. Münster, S. Piemonte and D. Sandbrink, Phase structure of the \( \mathcal{N}=1 \) supersymmetric Yang-Mills theory at finite temperature, JHEP 11 (2014) 049 [arXiv:1405.3180] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Curci and G. Veneziano, Supersymmetry and the lattice: a reconciliation?, Nucl. Phys. B 292 (1987) 555 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].
  16. [16]
    H. Suzuki, Supersymmetry, chiral symmetry and the generalized BRS transformation in lattice formulations of 4D \( \mathcal{N}=1 \) SYM, Nucl. Phys. B 861 (2012) 290 [arXiv:1202.2598] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    G. Münster and H. Stüwe, The mass of the adjoint pion in \( \mathcal{N} \) = 1 supersymmetric Yang-Mills theory, JHEP 05 (2014) 034 [arXiv:1402.6616] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    I. Montvay and E. Scholz, Updating algorithms with multi-step stochastic correction, Phys. Lett. B 623 (2005) 73 [hep-lat/0506006] [INSPIRE].
  19. [19]
    G. Bergner and J. Wuilloud, Acceleration of the Arnoldi method and real eigenvalues of the non-Hermitian Wilson-Dirac operator, Comput. Phys. Commun. 183 (2012) 299 [arXiv:1104.1363] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    J. Giedt, R. Brower, S. Catterall, G.T. Fleming and P. Vranas, Lattice super-Yang-Mills using domain wall fermions in the chiral limit, Phys. Rev. D 79 (2009) 025015 [arXiv:0810.5746] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M.G. Endres, Dynamical simulation of N = 1 supersymmetric Yang-Mills theory with domain wall fermions, Phys. Rev. D 79 (2009) 094503 [arXiv:0902.4267] [INSPIRE].ADSGoogle Scholar
  22. [22]
    JLQCD collaboration, S.W. Kim et al., Lattice study of 4d \( \mathcal{N}=1 \) super Yang-Mills theory with dynamical overlap gluino, PoS(LATTICE 2011)069 [arXiv:1111.2180] [INSPIRE].
  23. [23]
    M. Lüscher and S. Schaefer, Lattice QCD without topology barriers, JHEP 07 (2011) 036 [arXiv:1105.4749] [INSPIRE].CrossRefMATHGoogle Scholar
  24. [24]
    K. Demmouche, \( \mathcal{N}=1 \) SU(2) supersymmetric Yang-Mills theory on the lattice with light dynamical Wilson gluinos, Ph.D. thesis, University of Münster, Münster, Germany (2009).Google Scholar
  25. [25]
    APE collaboration, M. Albanese et al., Glueball masses and string tension in lattice QCD, Phys. Lett. B 192 (1987) 163 [INSPIRE].
  26. [26]
    DESY-Munster-Roma collaboration, F. Farchioni et al., The supersymmetric Ward identities on the lattice, Eur. Phys. J. C 23 (2002) 719 [hep-lat/0111008] [INSPIRE].
  27. [27]
    G. Bergner, P. Giudice, I. Montvay, G. Münster and S. Piemonte, Influence of topology on the scale setting, Eur. Phys. J. Plus 130 (2015) 229 [arXiv:1411.6995] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    A. Feo, P. Merlatti and F. Sannino, Information on the super Yang-Mills spectrum, Phys. Rev. D 70 (2004) 096004 [hep-th/0408214] [INSPIRE].ADSGoogle Scholar
  29. [29]
    K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and ϕ 4 theory, Nucl. Phys. B 226 (1983) 187 [INSPIRE].
  30. [30]
    K. Symanzik, Continuum limit and improved action in lattice theories. 2. O(N ) nonlinear σ-model in perturbation theory, Nucl. Phys. B 226 (1983) 205 [INSPIRE].
  31. [31]
    M. Lüscher and P. Weisz, On-shell improved lattice gauge theories, Commun. Math. Phys. 97 (1985) 59 [Erratum ibid. 98 (1985) 433] [INSPIRE].
  32. [32]
    B. Sheikholeslami and R. Wohlert, Improved continuum limit lattice action for QCD with Wilson fermions, Nucl. Phys. B 259 (1985) 572 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Wohlert, Improved continuum limit lattice action for quarks, report DESY-87-069 (1987).Google Scholar
  34. [34]
    S. Musberg, G. Münster and S. Piemonte, Perturbative calculation of the clover term for Wilson fermions in any representation of the gauge group SU(N ), JHEP 05 (2013) 143 [arXiv:1304.5741] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    T. Karavirta, K. Tuominen, A. Mykkanen, J. Rantaharju and K. Rummukainen, Non-perturbatively improved clover action for SU(2) gauge + fundamental and adjoint representation fermions, PoS(LATTICE 2010)064 [arXiv:1011.1781] [INSPIRE].
  36. [36]
    G.P. Lepage and P.B. Mackenzie, On the viability of lattice perturbation theory, Phys. Rev. D 48 (1993) 2250 [hep-lat/9209022] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Georg Bergner
    • 1
  • Pietro Giudice
    • 2
  • Gernot Münster
    • 2
  • Istvan Montvay
    • 3
  • Stefano Piemonte
    • 4
  1. 1.Albert Einstein Center for Fundamental Physics, Institute for Theoretical PhysicsUniversity of BernBernSwitzerland
  2. 2.University of Münster, Institute for Theoretical PhysicsMünsterGermany
  3. 3.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  4. 4.University of Regensburg, Institute for Theoretical PhysicsRegensburgGermany

Personalised recommendations