Advertisement

Journal of High Energy Physics

, 2018:63 | Cite as

Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation

  • Mar Bastero-Gil
  • Arjun Berera
  • Rudnei O. Ramos
  • João G. Rosa
Open Access
Regular Article - Theoretical Physics

Abstract

We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.

Keywords

Cosmology of Theories beyond the SM Thermal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSMATHGoogle Scholar
  4. [4]
    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Berera and L.-Z. Fang, Thermally induced density perturbations in the inflation era, Phys. Rev. Lett. 74 (1995) 1912 [astro-ph/9501024] [INSPIRE].
  7. [7]
    A. Berera, Warm inflation, Phys. Rev. Lett. 75 (1995) 3218 [astro-ph/9509049] [INSPIRE].
  8. [8]
    A. Berera, I.G. Moss and R.O. Ramos, Warm Inflation and its Microphysical Basis, Rept. Prog. Phys. 72 (2009) 026901 [arXiv:0808.1855] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Bastero-Gil and A. Berera, Warm inflation model building, Int. J. Mod. Phys. A 24 (2009) 2207 [arXiv:0902.0521] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    A. Berera, Interpolating the stage of exponential expansion in the early universe: A possible alternative with no reheating, Phys. Rev. D 55 (1997) 3346 [hep-ph/9612239] [INSPIRE].
  11. [11]
    A. Berera, Warm inflation at arbitrary adiabaticity: A Model, an existence proof for inflationary dynamics in quantum field theory, Nucl. Phys. B 585 (2000) 666 [hep-ph/9904409] [INSPIRE].
  12. [12]
    L.M.H. Hall, I.G. Moss and A. Berera, Scalar perturbation spectra from warm inflation, Phys. Rev. D 69 (2004) 083525 [astro-ph/0305015] [INSPIRE].
  13. [13]
    I.G. Moss and C. Xiong, Non-Gaussianity in fluctuations from warm inflation, JCAP 04 (2007) 007 [astro-ph/0701302] [INSPIRE].
  14. [14]
    C. Graham and I.G. Moss, Density fluctuations from warm inflation, JCAP 07 (2009) 013 [arXiv:0905.3500] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.O. Ramos and L.A. da Silva, Power spectrum for inflation models with quantum and thermal noises, JCAP 03 (2013) 032 [arXiv:1302.3544] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Bartrum, A. Berera and J.G. Rosa, Warming up for Planck, JCAP 06 (2013) 025 [arXiv:1303.3508] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Bartrum, M. Bastero-Gil, A. Berera, R. Cerezo, R.O. Ramos and J.G. Rosa, The importance of being warm (during inflation), Phys. Lett. B 732 (2014) 116 [arXiv:1307.5868] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    M. Bastero-Gil, A. Berera, I.G. Moss and R.O. Ramos, Theory of non-Gaussianity in warm inflation, JCAP 12 (2014) 008 [arXiv:1408.4391] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm Little Inflaton, Phys. Rev. Lett. 117 (2016) 151301 [arXiv:1604.08838] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Berera, M. Gleiser and R.O. Ramos, A First principles warm inflation model that solves the cosmological horizon/flatness problems, Phys. Rev. Lett. 83 (1999) 264 [hep-ph/9809583] [INSPIRE].
  21. [21]
    A. Berera and R.O. Ramos, Construction of a robust warm inflation mechanism, Phys. Lett. B 567 (2003) 294 [hep-ph/0210301] [INSPIRE].
  22. [22]
    I.G. Moss and C. Xiong, Dissipation coefficients for supersymmetric inflatonary models, hep-ph/0603266 [INSPIRE].
  23. [23]
    M. Bastero-Gil, A. Berera and R.O. Ramos, Dissipation coefficients from scalar and fermion quantum field interactions, JCAP 09 (2011) 033 [arXiv:1008.1929] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Bastero-Gil, A. Berera and J.G. Rosa, Warming up brane-antibrane inflation, Phys. Rev. D 84 (2011) 103503 [arXiv:1103.5623] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, General dissipation coefficient in low-temperature warm inflation, JCAP 01 (2013) 016 [arXiv:1207.0445] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    R. Cerezo and J.G. Rosa, Warm Inflection, JHEP 01 (2013) 024 [arXiv:1210.7975] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    E.W. Kolb and M.S. Turner, The Early Universe, Front. Phys. 69 (1990) 1 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  28. [28]
    D. Lyth and A. Liddle, The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure, Cambridge University Press, Cambridge (2009).CrossRefMATHGoogle Scholar
  29. [29]
    D. Bazow, G.S. Denicol, U. Heinz, M. Martinez and J. Noronha, Analytic solution of the Boltzmann equation in an expanding system, Phys. Rev. Lett. 116 (2016) 022301 [arXiv:1507.07834] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    D. Bazow, G.S. Denicol, U. Heinz, M. Martinez and J. Noronha, Nonlinear dynamics from the relativistic Boltzmann equation in the Friedmann-Lemaître-Robertson-Walker spacetime, Phys. Rev. D 94 (2016) 125006 [arXiv:1607.05245] [INSPIRE].ADSMATHGoogle Scholar
  31. [31]
    J.M. Cline, Baryogenesis, hep-ph/0609145 [INSPIRE].
  32. [32]
    A.D. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].Google Scholar
  33. [33]
    F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212 [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Fields and S. Sarkar, Big-Bang nucleosynthesis (2006 Particle Data Group mini-review), astro-ph/0601514 [INSPIRE].
  36. [36]
    D.V. Nanopoulos and S. Weinberg, Mechanisms for Cosmological Baryon Production, Phys. Rev. D 20 (1979) 2484 [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Bastero-Gil, A. Berera, R.O. Ramos and J.G. Rosa, Warm baryogenesis, Phys. Lett. B 712 (2012) 425 [arXiv:1110.3971] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M.S. Turner, A.G. Cohen and D.B. Kaplan, Isocurvature Baryon Number Fluctuations in an Inflationary Universe, Phys. Lett. B 216 (1989) 20 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Yokoyama and Y. Suto, Baryon isocurvature scenario in inflationary cosmology: A particle physics model and its astrophysical implications, Astrophys. J. 379 (1991) 427 [INSPIRE].
  40. [40]
    S. Mollerach, On the Primordial Origin of Isocurvature Perturbations, Phys. Lett. B 242 (1990) 158 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Sasaki and J. Yokoyama, Initial condition for the minimal isocurvature scenario, Phys. Rev. D 44 (1991) 970 [INSPIRE].ADSGoogle Scholar
  42. [42]
    J. Yokoyama, Formation of baryon number fluctuation in supersymmetric inflationary cosmology, Astropart. Phys. 2 (1994) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    K. Koyama and J. Soda, Baryon isocurvature perturbation in the Affleck-Dine baryogenesis, Phys. Rev. Lett. 82 (1999) 2632 [astro-ph/9810006] [INSPIRE].
  44. [44]
    D.H. Lyth, C. Ungarelli and D. Wands, The Primordial density perturbation in the curvaton scenario, Phys. Rev. D 67 (2003) 023503 [astro-ph/0208055] [INSPIRE].
  45. [45]
    D. Grin, D. Hanson, G.P. Holder, O. Doré and M. Kamionkowski, Baryons do trace dark matter 380,000 years after the big bang: Search for compensated isocurvature perturbations with WMAP 9-year data, Phys. Rev. D 89 (2014) 023006 [arXiv:1306.4319] [INSPIRE].ADSGoogle Scholar
  46. [46]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  47. [47]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  48. [48]
    M. Benetti and R.O. Ramos, Warm inflation dissipative effects: predictions and constraints from the Planck data, Phys. Rev. D 95 (2017) 023517 [arXiv:1610.08758] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Bastero-Gil, S. Bhattacharya, K. Dutta and M.R. Gangopadhyay, Constraining Warm Inflation with CMB data, arXiv:1710.10008 [INSPIRE].
  50. [50]
    R. Arya, A. Dasgupta, G. Goswami, J. Prasad and R. Rangarajan, Revisiting CMB constraints on Warm Inflation, arXiv:1710.11109 [INSPIRE].
  51. [51]
    S. Bartrum, A. Berera and J.G. Rosa, Fluctuation-dissipation dynamics of cosmological scalar fields, Phys. Rev. D 91 (2015) 083540 [arXiv:1412.5489] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Mar Bastero-Gil
    • 1
  • Arjun Berera
    • 2
  • Rudnei O. Ramos
    • 3
  • João G. Rosa
    • 4
  1. 1.Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain
  2. 2.School of Physics and AstronomyUniversity of EdinburghEdinburghUnited Kingdom
  3. 3.Departamento de Física TeóricaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Departamento de Física da Universidade de Aveiro and CIDMAAveiroPortugal

Personalised recommendations