6d Conformal matter
- 295 Downloads
- 96 Citations
Abstract
A single M5-brane probing G, an ADE-type singularity, leads to a system which has G × G global symmetry and can be viewed as “bifundamental” (G, G) matter. For the A N series, this leads to the usual notion of bifundamental matter. For the other cases it corresponds to a strongly interacting (1, 0) superconformal system in six dimensions. Similarly, an ADE singularity intersecting the Hořava-Witten wall leads to a superconformal matter system with E 8 × G global symmetry. Using the F-theory realization of these theories, we elucidate the Coulomb/tensor branch of (G, G′) conformal matter. This leads to the notion of fractionalization of an M5-brane on an ADE singularity as well as fractionalization of the intersection point of the ADE singularity with the Hořava-Witten wall. Partial Higgsing of these theories leads to new 6d SCFTs in the infrared, which we also characterize. This generalizes the class of (1, 0) theories which can be perturbatively realized by suspended branes in IIA string theory. By reducing on a circle, we arrive at novel duals for 5d affine quiver theories. Introducing many M5-branes leads to large N gravity duals.
Keywords
F-Theory AdS-CFT Correspondence Field Theories in Higher DimensionsNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References
- [1]E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [2]A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [3]E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [4]O.J. Ganor and A. Hanany, Small E 8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [5]N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [6]M. Bershadsky and A. Johansen, Colliding singularities in F-theory and phase transitions, Nucl. Phys. B 489 (1997) 122 [hep-th/9610111] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [7]I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [8]J.D. Blum and K.A. Intriligator, New phases of string theory and 6D RG fixed points via branes at orbifold singularities, Nucl. Phys. B 506 (1997) 199 [hep-th/9705044] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [9]J.D. Blum and K.A. Intriligator, Consistency conditions for branes at orbifold singularities, Nucl. Phys. B 506 (1997) 223 [hep-th/9705030] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [10]K.A. Intriligator, New string theories in six-dimensions via branes at orbifold singularities, Adv. Theor. Math. Phys. 1 (1998) 271 [hep-th/9708117] [INSPIRE].MathSciNetGoogle Scholar
- [11]A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [12]J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and generalized ADE orbifolds, JHEP 05 (2014) 028 [arXiv:1312.5746] [INSPIRE].CrossRefADSGoogle Scholar
- [13]D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].CrossRefADSGoogle Scholar
- [14]P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].ADSGoogle Scholar
- [15]P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].ADSGoogle Scholar
- [16]J. de Boer et al., Triples, fluxes and strings, Adv. Theor. Math. Phys. 4 (2002) 995 [hep-th/0103170] [INSPIRE].Google Scholar
- [17]P.S. Aspinwall and D.R. Morrison, Point-like instantons on K3 orbifolds, Nucl. Phys. B 503 (1997) 533 [hep-th/9705104] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [18]S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [19]C.-C. Chiou, A.E. Faraggi, R. Tatar and W. Walters, T-branes and Yukawa couplings, JHEP 05 (2011) 023 [arXiv:1101.2455] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [20]R. Donagi and M. Wijnholt, Gluing branes I, JHEP 05 (2013) 068 [arXiv:1104.2610] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [21]R. Donagi and M. Wijnholt, Gluing branes II: flavour physics and string duality, JHEP 05 (2013) 092 [arXiv:1112.4854] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [22]L.B. Anderson, J.J. Heckman and S. Katz, T-branes and geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [23]P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [24]D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [25]M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [26]P.S. Aspinwall, S.H. Katz and D.R. Morrison, Lie groups, Calabi-Yau threefolds and F-theory, Adv. Theor. Math. Phys. 4 (2000) 95 [hep-th/0002012] [INSPIRE].zbMATHMathSciNetGoogle Scholar
- [27]D.R. Morrison and W. Taylor, Classifying bases for 6D F-theory models, Central Eur. J. Phys. 10 (2012) 1072 [arXiv:1201.1943] [INSPIRE].CrossRefADSGoogle Scholar
- [28]D.R. Morrison and W. Taylor, Toric bases for 6D F-theory models, Fortsch. Phys. 60 (2012) 1187 [arXiv:1204.0283] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
- [29]C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [30]J.J. Heckman, More on the matter of 6D SCFTs, arXiv:1408.0006 [INSPIRE].
- [31]D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [32]A. Sen, A note on enhanced gauge symmetries in M and string theory, JHEP 09 (1997) 001 [hep-th/9707123] [INSPIRE].CrossRefADSGoogle Scholar
- [33]M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
- [34]N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].
- [35]K. Ohmori, H. Shimizu and Y. Tachikawa, Anomaly polynomial of E-string theories, JHEP 08 (2014) 002 [arXiv:1404.3887] [INSPIRE].CrossRefMathSciNetGoogle Scholar
- [36]K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, Prog. Theor. Exp. Phys. 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].CrossRefGoogle Scholar
- [37]E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [INSPIRE].ADSGoogle Scholar
- [38]B. Haghighat, A. Iqbal, C. Kozcaz, G. Lockhart and C. Vafa, M-strings, arXiv:1305.6322 [INSPIRE].
- [39]B. Haghighat, C. Kozcaz, G. Lockhart and C. Vafa, Orbifolds of M-strings, Phys. Rev. D 89 (2014) 046003 [arXiv:1310.1185] [INSPIRE].ADSGoogle Scholar
- [40]S. Hohenegger and A. Iqbal, M-strings, elliptic genera and N = 4 string amplitudes, Fortsch. Phys. 62 (2014) 155 [arXiv:1310.1325] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [41]S. Katz, P. Mayr and C. Vafa, Mirror symmetry and exact solution of 4D N = 2 gauge theories: 1, Adv. Theor. Math. Phys. 1 (1998) 53 [hep-th/9706110] [INSPIRE].MathSciNetGoogle Scholar
- [42]E. Perevalov and G. Rajesh, Mirror symmetry via deformation of bundles on K3 surfaces, Phys. Rev. Lett. 79 (1997) 2931 [hep-th/9706005] [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
- [43]O.J. Ganor, D.R. Morrison and N. Seiberg, Branes, Calabi-Yau spaces and toroidal compactification of the N = 1 six-dimensional E 8 theory, Nucl. Phys. B 487 (1997) 93 [hep-th/9610251] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [44]M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional gauge theories, Nucl. Phys. B 490 (1997) 107 [hep-th/9611201] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [45]A. Dey and J. Distler, Three dimensional mirror symmetry and partition function on S 3, JHEP 10 (2013) 086 [arXiv:1301.1731] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [46]S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program, hep-th/0612073 [INSPIRE].
- [47]D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].CrossRefADSzbMATHMathSciNetGoogle Scholar
- [48]C. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990) 713.CrossRefzbMATHMathSciNetGoogle Scholar
- [49]N.J. Hitchin, The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc. 55 (1987) 59 [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
- [50]R. Carter, Finite groups of Lie type: conjugacy classes and complex characters, Wiley, New York U.S.A. (1985).zbMATHGoogle Scholar
- [51]O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6D N = (2, 0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [52]O. Chacaltana, J. Distler and A. Trimm, Tinkertoys for the E 6 theory, arXiv:1403.4604 [INSPIRE].
- [53]J.J. Heckman and C. Vafa, An exceptional sector for F-theory GUTs, Phys. Rev. D 83 (2011) 026006 [arXiv:1006.5459] [INSPIRE].ADSGoogle Scholar
- [54]J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from brane monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [55]J.J. Heckman, C. Vafa and B. Wecht, The conformal sector of F-theory GUTs, JHEP 07 (2011) 075 [arXiv:1103.3287] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [56]J.J. Heckman and S.-J. Rey, Baryon and dark matter genesis from strongly coupled strings, JHEP 06 (2011) 120 [arXiv:1102.5346] [INSPIRE].CrossRefADSGoogle Scholar
- [57]J.J. Heckman, P. Kumar and B. Wecht, Oblique electroweak parameters S and T for superconformal field theories, Phys. Rev. D 88 (2013) 065016 [arXiv:1212.2979] [INSPIRE].ADSGoogle Scholar
- [58]E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [59]A. Hanany and A. Zaffaroni, Issues on orientifolds: on the brane construction of gauge theories with SO(2N ) global symmetry, JHEP 07 (1999) 009 [hep-th/9903242] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [60]S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, Membranes and five-branes with lower supersymmetry and their AdS supergravity duals, Phys. Lett. B 431 (1998) 42 [hep-th/9803109] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [61]C.-H. Ahn, K. Oh and R. Tatar, Orbifolds of AdS 7 × S 4 and six-dimensional (0, 1) SCFT, Phys. Lett. B 442 (1998) 109 [hep-th/9804093] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [62]M. Berkooz, A supergravity dual of a (1, 0) field theory in six-dimensions, Phys. Lett. B 437 (1998) 315 [hep-th/9802195] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [63]F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].CrossRefADSGoogle Scholar
- [64]J. Polchinski and E. Witten, Evidence for heterotic type-I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
- [65]M. Esole and S.-T. Yau, Small resolutions of SU(5)-models in F-theory, Adv. Theor. Math. Phys. 17 (2013) 1195 [arXiv:1107.0733] [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
- [66]P. Slodowy, Simple singularities and simple algebraic groups, Springer Verlag, Germany (1980).zbMATHGoogle Scholar
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.