Journal of High Energy Physics

, 2011:144 | Cite as

Degenerate stars and gravitational collapse in AdS/CFT

  • Xerxes Arsiwalla
  • Jan de Boer
  • Kyriakos Papadodimas
  • Erik Verlinde
Open Access


We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the ”Chandrasekhar limit” beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.


AdS-CFT Correspondence Holography and quark-gluon plasmas Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].zbMATHMathSciNetADSGoogle Scholar
  2. [2]
    J.R. Oppenheimer and G.M. Volkoff, On massive neutron cores, Phys. Rev. 55 (1939) 374 [SPIRES].zbMATHCrossRefADSGoogle Scholar
  3. [3]
    S.F. Ross and R.B. Mann, Gravitationally collapsing dust in (2 + 1)-dimensions, Phys. Rev. D 47 (1993) 3319 [hep-th/9208036] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    Y. Peleg and A.R. Steif, Phase transition for gravitationally collapsing dust shells in (2 + 1)-dimensions, Phys. Rev. D 51 (1995) 3992 [gr-qc/9412023] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Vacua, propagators and holographic probes in AdS/CFT, JHEP 01 (1999) 002 [hep-th/9812007] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys. B 563 (1999) 279 [hep-th/9905227] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    S.B. Giddings and S.F. Ross, D3-brane shells to black branes on the Coulomb branch, Phys. Rev. D 61 (2000) 024036 [hep-th/9907204] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    V. Balasubramanian, J. de Boer, E. Keski-Vakkuri and S.F. Ross, Supersymmetric conical defects: towards a string theoretic description of black hole formation, Phys. Rev. D 64 (2001) 064011 [hep-th/0011217] [SPIRES].ADSGoogle Scholar
  10. [10]
    S.B. Giddings and A. Nudelman, Gravitational collapse and its boundary description in AdS, JHEP 02 (2002) 003 [hep-th/0112099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    G.L. Alberghi and R. Casadio, On the gravitational collapse in Anti-de Sitter space-time, Phys. Lett. B 571 (2003) 245 [gr-qc/0306002] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    V.E. Hubeny, H. Liu and M. Rangamani, Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP 01 (2007) 009 [hep-th/0610041] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    S. Lin and E. Shuryak, Toward the AdS/CFT gravity dual for high energy collisions. 3. Gravitationally collapsing shell and quasiequilibrium, Phys. Rev. D 78 (2008) 125018 [arXiv:0808.0910] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [SPIRES].ADSGoogle Scholar
  17. [17]
    S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].ADSGoogle Scholar
  18. [18]
    H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].
  19. [19]
    M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, arXiv:1008.2828 [SPIRES].
  22. [22]
    J. de Boer, K. Papadodimas and E. Verlinde, Holographic neutron stars, JHEP 10 (2010) 020 [arXiv:0907.2695] [SPIRES].CrossRefGoogle Scholar
  23. [23]
    R. Jost, The general theory of quantized fields, American Mathematical Society, U.S.A. (1965).zbMATHGoogle Scholar
  24. [24]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [SPIRES].
  25. [25]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    E.H. Lieb and W.E. Thirring, Gravitational collapse in quantum mechanics with relativistic kinetic energy, Ann. Phys. 155 (1984) 494 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    E.H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987) 147 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. [28]
    R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general relativity and the concept of an equation of state, Phys. Rev. 187 (1969) 1767 [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    R.H. Boyer and R. Lindquist, A variational principle for a rotating relativistic fluid, Phys. Lett. 20 (1966) 504. CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    J.B. Hartle and D.H. Sharp, Variational principle for the equilibrium of a relativistic, rotating star, Astrophys. J. 147 (1967) 317. CrossRefADSGoogle Scholar
  31. [31]
    F.E. Schunck and E.W. Mielke, General relativistic boson stars, Class. Quant. Grav. 20 (2003) R301 [arXiv:0801.0307] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    D.N. Page and K.C. Phillips, Selfgravitating radiation in Anti-de Sitter space, Gen. Rel. Grav. 17 (1985) 1029 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    J.A. Wheeler, Geons, Phys. Rev. 97 (1955) 511 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  34. [34]
    S. Shapiro and S. Teukolsky, Black holes, white dwarfs and neutron stars: the physics of compact objects, Wiley, U.S.A. (1983).CrossRefGoogle Scholar
  35. [35]
    C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman, U.S.A. (1973).Google Scholar
  36. [36]
    J.M. Heinzle, N. Rohr and C. Uggla, Spherically symmetric relativistic stellar structures, Class. Quant. Grav. 20 (2003) 4567 [gr-qc/0304012] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  37. [37]
    P.-H. Chavanis, Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes, arXiv:0707.2292 [SPIRES].
  38. [38]
    V. Vaganov, Self-gravitating radiation in AdS(d), arXiv:0707.0864 [SPIRES].
  39. [39]
    J. Hammersley, A critical dimension for the stability of perfect fluid spheres of radiation, Class. Quant. Grav. 25 (2008) 205010 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].zbMATHMathSciNetGoogle Scholar
  42. [42]
    L. Álvarez-Gaumé, C. Gomez and M.A. Vazquez-Mozo, Scaling phenomena in gravity from QCD, Phys. Lett. B 649 (2007) 478 [hep-th/0611312] [SPIRES].ADSGoogle Scholar
  43. [43]
    L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical gravitational collapse: towards a holographic understanding of the Regge region, Nucl. Phys. B 806 (2009) 327 [arXiv:0804.1464] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [SPIRES].CrossRefGoogle Scholar
  45. [45]
    A. Avgoustidis, R. Jimenez, L. Álvarez-Gaumé and M.A. Vazquez-Mozo, Powering AGNs with super-critical black holes, arXiv:0905.2109 [SPIRES].
  46. [46]
    J. Novak, Velocity-induced collapses of stable neutron stars, Astron. Astrophys. 376 (2001) 606 [gr-qc/0107045] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    S.C. Noble and M.W. Choptuik, Type II critical phenomena of neutron star collapse, Phys. Rev. D 78 (2008) 064059 [arXiv:0709.3527] [SPIRES].ADSGoogle Scholar
  48. [48]
    L.-Y. Hung, D.P. Jatkar and A. Sinha, Non-relativistic metrics from back-reacting fermions, Class. Quant. Grav. 28 (2011) 015013 [arXiv:1006.3762] [SPIRES].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Xerxes Arsiwalla
    • 1
  • Jan de Boer
    • 1
    • 2
  • Kyriakos Papadodimas
    • 3
  • Erik Verlinde
    • 1
    • 2
  1. 1.Institute for Theoretical Physics University of AmsterdamAmsterdamThe Netherlands
  2. 2.Gravitation and Astro-Particle Physics AmsterdamAmsterdamThe Netherlands
  3. 3.Theory Group, Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations