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1 Introduction

String theory contains all kinds of elementary particles and forces, and thus in principle

can be used to describe all forms of matter. In the past two decades much of the progress in

string theory has centered around black holes, which may be viewed as the most extreme

form of matter. In fact, the matter that makes up a black hole is in such an extreme

form that it has entirely disappeared from the picture and is replaced by pure geometry.

Holography may be seen as an attempt to rescue some of this matter by assigning material

properties to the black hole horizon. To clarify the relationship between the holographic

matter and the matter that made the black hole one needs to investigate the process of

black hole formation, in other words, gravitational collapse.

A related question is whether string theory, in the context of the AdS/CFT correspon-

dence [1], can be used to describe other extreme forms of matter, such as the degenerate

matter that makes up a neutron star. Indeed, neutron stars, or more generally degenerate

stars like ”quark stars” or ”strange stars”, can be seen as black hole precursors in the sense

that they may undergo gravitational collapse to form a black hole. An essential feature

of neutron stars is that they are made out of fermions: it is the exclusion principle that

keeps the star from undergoing gravitational collapse. Our aim is to obtain a descrip-

tion of a ”neutron star” (or more precisely a ”degenerate star”) in anti de Sitter space
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in terms of the dual conformal field theory on the boundary. In particular, we are inter-

ested to investigate and interpret the criterion that determines whether the star undergoes

gravitational collapse.

One of the first and most famous equations that deals with the physics of a neutron

star is the Tolman-Oppenheimer-Volkoff (TOV) equation. In four dimensional flat space

time it takes the form

dp(r)

dr
= −2G

p(r) + ρ(r)

r2
· M(r) + 4πr2p(r)

1 − 2GM(r)/r
(1.1)

where the radial dependent mass M(r) is obtained from the energy density ρ(r) through

dM(r)

dr
= 4πr2ρ(r). (1.2)

The TOV equation follows from combining the energy-momentum conservation with the

Einstein equations and holds for spherically symmetric neutron stars. It describes the

radial dependence of the pressure p(r) and energy density ρ(r) for a given equation of

state. Solutions only exist when the pressure is sufficient to sustain the gravitational force

to prevent the neutron star from collapsing. Typically one finds that there is an upper

limit for the mass beyond which the neutron star will be too heavy and starts to collapse

to form a black hole (or in some cases another type of degenerate star). In their original

paper [2] Oppenheimer and Volkoff used the equation of state of a free relativistic Fermi

gas to find a limiting mass of 0.7 times the solar mass. However, more realistic equations

of state lead to a higher value of the limiting mass around 2 or 3 solar masses.

In this paper we construct states in the boundary CFT that are the holographic dual of

a degenerate star in anti de Sitter space. Our discussion will be quite general without refer-

ence to a specific AdS/CFT setup and the qualitative aspects of our results are independent

of the number of space time dimensions. Using the state-operator correspondence we con-

sider degenerate states corresponding to composite multi-trace operators constructed from

a large number of copies of a given fermionic single trace operator. Using ’t Hooft factor-

ization it is argued that in a strict large N limit these operators behave as (generalized)

free fields. The bulk description of these states is given by a zero temperature degenerate

gas of relativistic fermions. In the limit of a large number of particles one can give a

hydrodynamic description purely in terms of their energy density and pressure. We first

consider the case without bulk interactions so that the equation of state is simply that of a

free degenerate Fermi gas. We show that in the hydrodynamic description the degenerate

star is confined to a spherical region in AdS space, due to the gravitational potential well.

The radius in AdS units turns out to be given by the ratio of the Fermi momentum in

the center of the star and the mass of the constituent fermions. As a verification of our

hydrodynamic description we show that it precisely reproduces the mass predicted from a

boundary analysis for static degenerate stars as well as for the case with rotation.

Next we consider a double scaling regime chosen so that the gravitational self interac-

tions of the fermions will become important, while we can still ignore Planck scale physics.

Since our primary interest is to understand first qualitatively the criterion for gravitational
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collapse we focus our attention to including the self gravity of the degenerate star, while

ignoring the role of all other interactions. Thus, following Oppenheimer and Volkoff, we

use the equation of state of a free degenerate Fermi gas in the hydrodynamic description of

the star, and take the gravitational self interaction into account through a generalization

of the TOV equation to five dimensional anti de Sitter space. The resulting equations are

studied numerically. We find that as a function of the central density, the mass of the star

at first increases, but reaches a limiting mass at some critical value after which the mass

slightly reduces again. We interpret the limiting mass as the point after which the star will

become unstable and will start to undergo gravitational collapse. The value of the limiting

mass translates in the boundary theory to a limiting conformal dimension of the composite

operator made from the fermionic primary fields.

A basic motivation for our work was towards analyzing the process of gravitational

collapse and black hole formation in AdS/CFT. This is an interesting problem, which

has been addressed in several works in the past [3–16]. The basic intuition is that radial

collapse corresponds to motion in the “scale direction” of the CFT, while the subsequent

black hole formation corresponds to deconfinement and thermalization on the boundary

theory. A more quantitative description of this picture would clearly be desirable, but is

difficult since the boundary theory is strongly interacting, the process time dependent and

the radial holographic dimension is not easily represented in the CFT. In this direction,

it may be helpful to identify simple initial conditions to study (at least the onset of) the

dynamical process of collapse. A star, on the verge of gravitational collapse, is a good

candidate since it is a static configuration and presumably simpler to understand from the

boundary point of view.

Another motivation was to make contact with the recent developments on the holo-

graphic analysis of strongly interacting fermions. In several works [17–20] correlators of

fermionic fields have been evaluated in the presence of a black hole in AdS. Such compu-

tations reveal the presence of a Fermi surface in the bulk, of non-Fermi liquid type. For

a better understanding of these results it might be worthwhile to explore the boundary

meaning of a simpler system, that of a Fermi-gas in AdS without the presence of a black

hole.1 One should keep in mind that while the fermions are free in the bulk, they are not

ordinary free fermions on the boundary (i.e. they do not obey a Dirac equation on the

boundary) as the boundary theory is strongly coupled. Instead they are “generalized free

fields” i.e. their correlators factorize even though they do not obey linear wave equations.

Finally let us mention another motivation for constructing a holographic degenerate

star, one of a more conceptual nature. Our degenerate star in AdS resembles, for many

purposes, a conventional macroscopic object. Since it is embedded in AdS it has a holo-

graphic description on the boundary theory. It would be interesting to understand in more

detail how the hologram works in this case. In particular it might be easier to “decode”

the hologram in the case of a star than for a black hole, due to the absence of a horizon.

Our star is a static, spherically symmetric configuration in the bulk. The only nontrivial

1The interesting paper [21] appeared while this draft was being prepared, in which fermion correlators

were evaluated on a background with fermions, without a black hole horizon.
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information is encoded in the radial profile of the density. It is not obvious how this radial

profile is encoded in the boundary theory, since the radial dimension is not manifest on

the boundary but rather entangled with the “scale” of excitations in the CFT. We believe

that a star in AdS is a good toy model to further explore the holographic mapping.

We would like to emphasize the following point about the aforementioned goal. One

might think that decoding the hologram on the boundary theory is difficult because of

strong coupling effects in the gauge theory and thus hopeless unless one manages to compute

at strong coupling. While this is true to some extent, we believe that there are interesting

questions to be understood, which are not dependent on strong coupling dynamics. In

a large N gauge theory the strong coupling effects can be “hidden” in the conformal

dimensions and 3-point functions of single-trace gauge invariant operators. These quantities

are difficult to compute. Nevertheless, let us assume that in some magical way we knew

their exact values at strong coupling. Would that be sufficient to understand how the

hologram works? In principle it should,2 because from this information we can reproduce

all correlators of the CFT. However in practice, even armed with this information, we

do not know yet how to reconstruct the bulk. Understanding how the radial profile of a

macroscopic object, such as our degenerate star, is encoded on the boundary theory may

be a good starting point for addressing this question. Ultimately it would be fascinating

to understand the CFT meaning of the Einstein/TOV equations.3 Unfortunately we do

not have much to report on this yet but we hope to revisit this and related questions in

future work.

The main idea presented in this work was briefly described in [22]. In this paper we

expand on various aspects that were not covered in detail in [22], we consider the case

of charged fermions and that of a thermal star, and finally we discuss some issues about

the validity of our approximations and the embedding in specific AdS/CFT dualities. The

plan of the paper is as follows: in section 2 we consider a ball of Fermi gas in AdS in

the limit of infinite N and construct its dual holographic representation. In section 3

we discuss our double scaling limit, estimate the importance of various interactions and

present the TOV equations for the fermionic fluid. In section 4 we present our numerical

results and discuss the Chandrasekhar limit beyond which the star undergoes gravitational

collapse. In section 5 we try to understand the boundary interpretation of the gravitational

interactions between the fermions. In section 6 we discuss the extent to which our various

approximations are justified and the possibility of embedding our construction in a specific

AdS/CFT correspondence. In section 7 we analyze the case where the fermions are charged

under a U(1) gauge field in the bulk. In section 8 we present a similar system corresponding

to a star made out of thermal gas and discuss its relevance as the dual of a “superheated

phase” in certain gauge theories. Finally in section 9 we close with some discussions.

2At least for length scales which are not too small compared to the size of AdS and in the absence of

black holes. In other words when the O(N2) degrees of freedom are not excited nontrivially above their

ground state at strong coupling.
3In CFTs with classical gravity dual.
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2 Free Fermi gas in AdS

In this section we will study a degenerate gas of free fermions in AdSd+1. We will as-

sume that the bulk theory is holographically dual to a conformal field theory which has

the analogue of a large N expansion. To be more general we will express the expansion

parameter in terms of the central charge c of the CFT. In this section we work in the limit

c → ∞, keeping other quantities fixed. In this limit all interactions between single-trace

operators are suppressed by powers of 1/
√
c and the fermions become essentially free. The

only interaction which remains is the gravitational attraction of the AdS background which

acts as a confining box. We work in a regime of the gauge theory where there is a classical

gravity dual, such as the λ≫ 1 limit in the N = 4 SYM.4

2.1 Boundary description

We will construct composite multi-trace operators that are made out of a large number of

single trace fermionic operators. The composite operators will be ”degenerate” in the sense

that they represent the operators with the lowest possible conformal dimension that can be

made out of a given number of single trace fermionic operators of a certain kind. Through

the state-operator correspondence these degenerate composites represent the states that

are holographically dual to the degenerate fermionic gas in the bulk theory.

2.1.1 Degenerate fermionic operators

Gravity in AdSd+1 is holographically dual to a conformal field theory on Sd−1 × time. The

Hilbert spaces of the two theories are isomorphic, so any quantum state in the bulk is dual

to a state in the CFT. The states of the CFT can be conveniently labeled by local operators

on the plane via the state-operator correspondence

lim
z→0

Φ(z) |vac〉 = |Φ〉

The energy of the state |Φ〉 is equal to ∆/ ℓ where ℓ is the radius of Sd−1 and ∆ the

dimension of the operator Φ. The other quantum numbers of the state (like the angular

momentum and R-charge) are also determined by those of Φ.

In AdS/CFT one makes a distinction between single trace and multi trace operators.

The first kind may be thought of as single particle states, while the latter are multi-

particle states. However, this distinction is only well defined at large N , or more generally

for certain classes of CFTs with a large central charge c. The reason being that 1/N effects

will lead to a mixing between single trace and multi-trace operators.

For certain strongly coupled supersymmetric CFTs the bulk theory is given by an

AdS supergravity theory, which for large central charge can be treated (semi-) classically.

The bulk theory contains bosons and fermions, and accordingly the boundary single trace

operators may be distinguished into bosonic and fermionic operators. Whether a field

is fermionic or bosonic is determined according to the spin-statistics theorem through its

4However, as we will discuss in section 6, the N = 4 SYM may not be the best setup to realize the

degenerate star.
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representations of the SO(d, 2) conformal symmetry group. In particular, primary operators

that transform in the spinor representation correspond to fermions, and have correlation

functions that are anti-symmetric under the exchange of two identical operators.

The fermionic nature of primary operators can in specific cases also be understood

from their construction in terms of the basic fields of the underlying field theory. To give

a concrete example, let us consider the case of N = 4 SYM. The spectrum of operators

contains chiral primary fields that are holographically dual to the Kaluza-Klein modes of

the type IIB supergravity theory on AdS5×S5. These chiral primaries form representations

of the SO(6) R-symmetry group, and are arranged in short supermultiplets. The lowest

component is given by the bosonic single trace operators

ΦI1I2...Ik =
[
tr
(
φI1φI2φI3 . . . φIk

)]
symmetric
traceless

By applying a supersymmetry transformation one learns that the same supermultiplet

contains fermionic single trace operators of the form

ΨI1I2...Ik
Aα = [QAα,Φ

I1I2...Ik ] =
[
ΓI1ABtr

(
λBa φ

I2φI3 . . . φIk
)]

symmetric
traceless

(2.1)

Here ΓIAB is an SO(6) gamma matrix, with spinor indices A,B and vector index I. We

note that this operator is not primary with respect to the superconformal group, but it is a

conformal primary operator with respect to its bosonic subgroup. The BPS bound implies

that the field Ψ has conformal dimension k + 1
2 for all values of the ’t Hooft coupling λ.

The fermionic field Ψ also carries an SO(4) spinor index α, and a multi-index made from

a symmetric traceless combination of vector indices. In the following we clearly wish to

avoid using all of these indices. Indeed, except for the fact that these fields are fermionic,

we have no need for any of these quantum numbers. This is because we will work either

in a regime in which we ignore all interactions, or in an approximation in which we do the

same except for gravity.5 All this will not be very relevant for what follows, but merely

was meant to give a concrete example of a fermionic primary field.

Let us now start with a fermionic single trace operator Ψ of dimension ∆0. For

simplicity we ignore the spinor indices of Ψ since this will not affect any of our following

results qualitatively. We emphasize that Ψ is not one of the fundamental field of the

Lagrangian but rather a gauge invariant operator which has finite conformal dimension at

strong coupling. We work in normalization where the 2-point function is

〈
Ψ(x)Ψ(y)

〉
=

1

|x− y|2∆0

The ’t Hooft large c factorization implies that for single trace operators the connected

correlators are suppressed as

〈
Ψ(x1)Ψ(x2) . . .Ψ(xn)

〉
con

= O
(
c

2−n
2

)

5And even if we would try to keep track of R-charges, we can still construct neutral composite states

by including all fermionic operators in a complete multiplet. The only complication this will lead to is

a degeneracy factor equal to the dimension g of the SO(6) representation corresponding to the traceless

symmetric s-tensors.
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which in turn implies that the field Ψ(x) behaves effectively like a “free” field at large c.

We can construct multi trace operators by taking products of many of these fields without

having to worry about operator mixing with operators with a different number of traces. In

a sense, at large c the fermionic operators generate a Fock space, just like free fields.6 This

fact will be true as long as the number of operators, or more precisely the total conformal

dimension, is small compared to the central charge c of the CFT. This point will become

important when we discuss the possible role of interactions.

We now turn to the multitrace operators that can be constructed from the operator

Ψ. From the fact that correlation functions are antisymmetric under the exchange of two

fermionic primaries 〈
. . .Ψ(x)Ψ(y) . . .

〉
= −

〈
. . .Ψ(y)Ψ(x) . . .

〉

one derives that the operator product of two of these primaries is also antisymmetric

Ψ(x)Ψ(y) = −Ψ(y)Ψ(x).

Normally one defines the normal ordered product : Ψ2(x) : by taking the limit x → y

after subtracting possible divergent terms. For fermionic fields the result is zero, due

to the antisymmetry. This is of course just a reflection of the Pauli exclusion principle.

Therefore, to construct a nontrivial operator out of two fermionic primaries we have to

include a derivative. This gives operators of the kind : Ψ∂iΨ :, where ∂i denotes the

derivative w.r.t. xi. This operator is the operator of lowest conformal dimension that

can be found in the regular part of the operator product expansion of Ψ(x)Ψ(y).7 For a

d-dimensional CFT there are d types of these operators.

We want to continue with the construction of multi-trace operators of the lowest pos-

sible conformal dimension made out of three, four, all the way to a very large number of

copies of the basic fermionic operator Ψ. Each time we have to consider the fact that the

next operator needs to be anti-symmetrized with the previous ones. So we have to act

again with derivatives every time making sure that the combination of derivatives has not

been used before and also that we are using the smallest number of derivatives that are

necessary. If we have constructed an operator of this type with NF insertions of the basic

operator Ψ, we can inductively define the degenerate operator with NF + 1 insertions as

the operator with lowest conformal dimension appearing in the regular part of the OPE

between the composite with NF insertions of Ψ’s and one additional Ψ. This definition is

unambiguous at infinite c. Continuing like this one notices that one is filling up ”shells”,

very much like an atom, where each shell is labeled with the number n of derivatives that

are being used.

In order to end up with a rotationally symmetric composite operator it is natural to

consider the ”noble elements” with a completely filled last shell. We will denote the number

of derivatives in the last shell by nF , since it plays the role of a Fermi level. In this way

6Though it is not a standard free field in d dimensions, but rather a “generalized free field” [23]: it

does not obey any linear wave equation since its conformal dimension is non-canonical but nevertheless its

correlators factorize.
7This statement is precise in the c→ ∞ limit.
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we arrive at the following form of the degenerate composite operators

Φ = Ψ
∏

i

∂iΨ
∏

{i,j}

∂i∂jΨ
∏

{i,j,k}

∂i∂j∂kΨ . . . . . .
∏

{i1,i2,...in}

∂i1∂i2 . . . ∂inF
Ψ (2.2)

where one takes in each shell the product over all possible n-tuples made from d derivatives.

We note that the composite operator only depends on the choice of the number nF . It does

not carry any other indices, and hence the corresponding state is unique. In other words,

we do not have to deal with counting states: the total entropy is equal to zero. It should

also be obvious why these composite operators are called ”degenerate”.

In the bulk interpretation each insertion of the operator Ψ represents the addition of

a particle. Some simple combinatorics show that a completely filled shell made from fields

with n derivatives contains (
n+d−1

d−1

)

different fields, and hence corresponds to that many particles in the bulk. The total number

of fields (or particles) is found by summing over all shells

NF =

nF∑

n=0

(
n+d−1

d−1

)
=

(
nF+d

d

)
(2.3)

Next let us now determine the conformal dimension of a degenerate composite operator Φ

with nF filled shells. The conformal dimension of the operators in the n-th shell is n+ ∆0,

since each derivative adds one to the conformal dimension. Hence the total conformal

dimension is

∆ =

nF∑

n=0

(n+ ∆0)

(
n+d−1

d−1

)
= d

(
nF+d

d+1

)
+ ∆0

(
nF+d

d

)
(2.4)

The second term is proportional the the total number of fermions and represents the

contribution of their “rest mass” to the energy, while the first term is the “kinetic energy”

coming from the derivatives.

In this discussion we have ignored so far the spinor index of the field. This can be

treated in a similar way as the electron spin in atomic physics. It simply tells us that

each state can be occupied by a number of fermions, namely as many as the dimension

of the spinor representation. So if we would have included it, we would have to write an

additional product over α which would have multiplied the counting formulas for NF and

∆ by the dimension of the spinor representation. Similarly, if we would have considered a

number of species g of fermions, these formulas have an overall factor g.

Apart from these harmless simplifications we would like to emphasize that our discus-

sion so far has been exact for all values of the coupling of the gauge theory, as long as

c → ∞. We have assumed that the basic building block Ψ of our operators has confor-

mal dimension ∆0. At the moment we do not care whether this ∆0 is the same as the

conformal dimension of Ψ at weak coupling. For us ∆0 can be considered as an input

parameter which is determined by the (possibly strongly coupled) dynamics. But even
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this issue could be settled by taking Ψ to be a chiral primary in a supersymmetric theory.

On the other hand the operator Φ defined in (2.2) is definitely not supersymmetric, even

if Ψ is, since the derivatives increase the conformal dimension without adding R-charge.

The reason that the expression (2.4) is still reliable is based on the ’t Hooft factorization

at large c: the conformal dimensions of multi-trace operators are equal to the sum of the

individual conformal dimensions up to 1
c corrections. This statement is based on the planar

expansion and does not depend on the value of the ’t Hooft coupling. Hence in the limit

c→ ∞ our formula (2.4) is exact. The ’t Hooft factorization also guarantees that at large

c we do not have mixing of the operator Φ with other operators with the same quantum

numbers. These statements are reliable if we take c→ ∞ keeping other quantities (like ∆0

and nf ) fixed.

Finally, let us finish this section with a comment on the SO(d) decomposition of the

states in the n-th shell. These states are given by symmetric n-tensors, but since they

are not traceless they do not form an irreducible representation. The dimension of the

irreducible representation of the symmetric traceless n-tensors is given by the number of

symmetric n-tensors minus the number of symmetric (n−2) -tensors. In this way we find

that the states in the n-th shell decompose into a sum of representations corresponding to

traceless symmetric (n−2k) -tensors, with k an integer that runs from8 0 to [n/2]. Just as

a check one verifies that
(
n+d−1

d−1

)
=

[n/2]∑

k=0

[(
n−2k+d−1

d−1

)
−
(
n−2k+d−3

d−1

)]
(2.5)

2.1.2 “Free field” mode expansion

The state-operator correspondence is a convenient way to describe states in a CFT. The re-

lationship with the corresponding bulk state becomes more manifest, however, in a slightly

different representation of the states. Instead of creating the state at τ = −∞ one can

represent the same state by making use of a mode expansion of the primary field on the

cylinder Sd−1×R. So we go back to Minkowski signature. At large c the primary operator

can be expanded in modes [24] on Sd−1 as

Ψ(t,Ω) =
∑

n,l,m

αn,l,m Yl(Ωd−1)e
iEnt + β†n,l,m Y

∗
l (Ωd−1)e

−iEnt (2.6)

where the energies satisfy the condition Enl = (∆0 + n)/ℓ, n = 0, 1, 2 . . ., determined by

the representations of the conformal group. The expansion (2.6) has to be understood as a

definition of the operators αn,l,m, βn,l,m. Using the 2-point function of the field Ψ and the

fact that its correlators factorize at large c we find that the operators αn,l,m, βn,l,m satisfy

the algebra of fermionic ladder operators

{αn,l,m, α†
n′,l′,m′} ∼ δnn′δll′δm,m′ , {βn,l,m, β†n′,l′,m′} ∼ δnn′δll′δm,m′ (2.7)

and all other anticommutators are zero. The vacuum state satisfies the condition αn,l,m|vac〉 =

βn,l,m|vac〉 = 0. So we can use these modes to build a multi particle state from the vacuum.

8Here with [ . . . ] we denote the integral part of a possibly fractional number.

– 9 –



J
H
E
P
0
1
(
2
0
1
1
)
1
4
4

In this way one finds the state |Φ〉 corresponding to the operator (2.2) has an alternative

representation as

|Φ〉 =
∏

n,l,m

α†
n,l,m|vac〉 (2.8)

However it should be stressed that the expansion (2.6) and the commutation relations (2.7)

are only true in the c → ∞ limit, keeping other quantities fixed. If the operator Ψ is

inserted between states whose conformal dimension is of the order of the central charge,

then factorization may not hold any more and the commutation relations (2.7) will be

modified. Hence the repeated use of the modes of the operator Ψ is only allowed in the

limit of large central charge where factorization is reliable.

2.1.3 Density of states

Let us now introduce the total mass M , the fermion mass mf , and the Fermi energy ǫF via

mf =
∆0

ℓ
, M =

∆

ℓ
, ǫF =

nF + ∆0

ℓ
. (2.9)

where ℓ is the radius of the boundary Sd−1. We express the number of particles NF given

in (2.3) and the mass M in terms of the Fermi energy ǫF and the fermion mass mf in

the limit that nF = (ǫF − mf )ℓ and ∆0 = mf ℓ become large. The number of fermionic

particles may be expressed as

NF =
ℓd

d!
(ǫF −mf )

d (2.10)

where we ignored all terms that are subleading in nF . For the total mass we use the

expression (2.4) for the total conformal dimension ∆. Keeping the leading contributions

of both terms we find

M =
d ℓd

(d+1)!
(ǫF −mf )

d+1 +
mf ℓ

d

d!
(ǫF −mf )

d (2.11)

It is important that we keep both ǫF as well as mf in these expressions, since we want

to keep the ratio of ǫF and mf finite. The expressions (2.10) and (2.11) only hold in

the specified regime, since we have not taken into account any interactions, gravitational

or otherwise.

We will be interested in the limit of large nF (and large ∆0), so it is more convenient

to rewrite the sums in the expressions (2.3) and (2.4) as integrals. This gives

N(ǫF ) =

∫ ǫF

mf

dǫ g(ǫ) , M(ǫF ) =

∫ ǫF

mf

dǫ ǫ g(ǫ) , (2.12)

where the density of states g(ǫ) is given by

g(ǫ) =
ℓd

(d−1)!
(ǫ−mf )

d−1 (2.13)

This expression is valid in the strict large c limit.
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Notice that this density of states differs qualitatively from that of a free fermion in d

spacetime dimensions. For the latter the density of states grows like ǫd−2. In other words,

while the fermionic operator Ψ is defined in a d dimensional CFT we have found that the

density of states created by it grows like that of a d + 1 dimensional gas. Of course this

is related to the fact that the operator Ψ is not really a fundamental free field obeying

a linear wave equation, but rather a “generalized free field” which naturally lives in one

additional dimension. In a sense this dimension is the scale in the conformal field theory.

2.2 Quantum states in the bulk

The fermionic single trace operator Ψ corresponds to a fermionic field ψ in AdS spacetime.

On-shell this field satisfies a field equation which in principle depends on the spin of the

field. For spin one-half it would be the Dirac equation, or for higher spin one would

get the Rarita-Schwinger equations and its generalizations. But since eventually we are

interested in taking the limit of a large number of particles and making contact with a

hydrodynamic description, the distinction between the different type of fermionic particles

and field equations becomes irrelevant. Therefore, to simplify our discussion we will use

the partial waves of the Klein-Gordon equation, which are easier to deal with and closer

to the standard knowledge.9

The global AdSd+1 metric is given by

ds2 = −
(

1 +
r2

ℓ2

)
dt2 +

(
1 +

r2

ℓ2

)−1

dr2 + r2dΩ2
d−1. (2.14)

where ℓ is the AdS radius.

We will assume that the field ψ satisfies the d+1-dimensional Klein Gordon equation

in AdS space, which in full detail looks like
[
−
(

1 +
r2

ℓ2

)−1

∂2
t + r1−d∂r

((
1 +

r2

ℓ2

)
rd−1∂r

)
+ r−2∆Ω +m2

f

]
ψ(t, r,Ω) = 0, (2.15)

where ∆Ω denotes the laplacian on Sd−1. The mass mf of the field ψ and the conformal

dimension of the operator ∆0 are related by the formula ∆0 = d
2 +

√
d2

4 + (mf ℓ)2. For

large values of mf we can approximate ∆0 ≈ mf ℓ, which of course was the reason for

the identification in (2.9). Since we are interested in states which can be considered as

finite energy excitations above the standard vacuum of the theory, we only focus on the

normalizable modes in AdS. We then find that the partial wave solutions of the Klein

Gordon equation take the general form

ψn,l,m(t, r,Ω) = e−i(n+∆0)t/ℓ fn−2l,l(r)Yl,m(Ω). (2.16)

Here fn,l(r) is some hypergeometric function [25], whose precise form will not be important

for us. The key point is that both the bulk and the boundary fields have the same quantum

9The fact that the Klein-Gordon equation usually describes bosonic particles does not pose a problem,

because we can implement Fermi statistics by hand and take the degeneracy of the spin degrees of freedom

into account afterwards. Again, this is very analogous to the standard treatment of the electron spin in

atomic physics and is a reliable approximation in the limit of large number of particles.
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numbers. This makes the correspondence straightforward. To be precise, the relationship

with the operator Ψ in the CFT may be expressed by

Ψ(t,Ω)|vac〉 = lim
r→∞

e∆0r/ℓ ψ(t, r,Ω)|vac〉 (2.17)

This implies that the creation modes that we defined in the CFT are indeed directly related

to those constructed out of the bulk fields. The Hilbert spaces are therefore completely

identified, at least in this free field limit. This also implies that the composite operator that

we constructed indeed may be identified with a multiparticle state, whose complete wave

function may be represented in the bulk as a Slater determinant in terms of the modes

given in (2.16).

|Φ〉 =
∏

n,l,m

α†
n,l,m|vac〉 (2.18)

2.3 Hydrodynamic description

In this section we will give a hydrodynamic description of the multi-particle state as a free

degenerate Fermi gas in AdS space. The Fermi gas is found to be confined to a spherical

region with a radius determined by the ratio of the Fermi momentum and the fermion

mass. This fact is due to the gravitational potential well of the AdS space and not due

to self-gravity.

2.3.1 The equation of state

At first one may think that the equation of state for a degenerate Fermi gas in AdS space

is different from that in flat spacetime. For instance, the spacing of the lowest energy levels

are determined by the AdS radius, and differ from that of flat space. But when the number

of particles within one AdS volume is very large, one can safely ignore the effect of the

curvature radius, and use a local description of the gas as if it lived in flat spacetime. As

we will see this approximation reproduces the exact results of the previous subsection in

the limit of large number of particles.

To make this point more clear, consider a degenerate free Fermi gas in a box of size L

in d spatial dimensions. The Fermi momentum kF is related to the chemical potential µ via

µ =
√
k2
F +m2

f . (2.19)

At zero temperature all states satisfying the bound

2π|~n|
L

≤ kF (2.20)

are being occupied. Semi-classically we can count states by calculating the volume of phase

space. Hence, the particle number density n is equal to the volume of the d-dimensional

Fermi sphere:

n =
Vd−1k

d
F

d(2π)d
. (2.21)

Here Vd−1 is the area of a unit (d−1)-sphere.
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These are the usual relations that hold in flat space. But as long as the number of

particles per AdS volume is very large, the Fermi momentum will be much larger than the

inverse AdS radius ℓ. Therefore, in order to determine the equation of state one can take

the size L of the box very small compared to ℓ. This means that the flat space relations

given above also apply locally in the curved AdS background. The only difference with a

translationally invariant flat space situation is that in this case one should expect that the

Fermi momentum kF and chemical potential µ depend on the position in the AdS space.

The energy density and pressure are given by the standard expressions

ρ =
Vd−1

(2π)d

∫ kF

0
dk kd−1

√
k2 +m2

f ,

p =
Vd−1

d(2π)d

∫ kF

0
dk

kd+1

√
k2 +m2

f

, (2.22)

and obey the standard thermodynamic relations

dρ = µdn, ρ+ p = µn. (2.23)

One small comment about the energy density ρ will be useful. Namely, it can be written as

ρ =

∫ ǫF

mf

ǫ
dn

dǫ
dǫ (2.24)

Intuitively, the validity of this identity should be obvious: one simply adds all energies ǫ

with a weight given by the local density of particles with that energy. Similarly the pressure

can be written as

p =

∫ ǫF

mf

n(ǫ)dǫ

2.3.2 Energy momentum conservation

In the hydrodynamic limit we expect to be able to describe the free Fermi gas purely in

terms of the local energy density ρ, the pressure p, and a local velocity field uµ normalized

so that uµuµ = −1. The energy momentum tensor is given in terms of these quantities as

Tµν = (ρ+ p)uµuν + pgµν (2.25)

We will first consider the non-rotating degenerate state and postpone the discussion of

the rotating state to section 2.4. Without rotation the energy density and pressure will

only depend on the radius r. In this section we are still ignoring the effect of self-gravity

of the gas. However, we still have to take into account the effect of the curved AdS

background. This is done by imposing conservation of the energy momentum tensor. For a

static configuration it is the equivalent of imposing hydrostatic equilibrium. Anticipating

possible generalizations let us write the metric in the general form

ds2 = −A(r)2dt2 +B(r)2dr2 + r2dΩ2
d−1. (2.26)
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The Fermi gas is static, and hence we take ut = A(r) and all other components of u equal

to zero. The only non-trivial equation is ∇µTµr = 0, which becomes

dp

dr
+
A′

A
(ρ+ p) = 0. (2.27)

This equation is surprisingly easy to solve. By making use of the identities (2.23) one easily

verifies that (2.27) is satisfied when the chemical potential obeys

µ(r) =
ǫF
A(r)

, (2.28)

where at this stage ǫF is an arbitrary constant. We conclude that the radial dependence

of the chemical potential is simply due to the gravitational redshift. With some hindsight

this result could have been anticipated: it is an analogue of the familiar Tolman relation

for the temperature, which is known to hold for any static gravitational field.

So far, this discussion has been general in the sense that we have not used the explicit

form of the AdS metric. But let us now go back to the specific case of the AdS space time,

and investigate its energy and pressure profile in more detail. For the AdS metric (2.14)

the relation (2.28) becomes

µ(r) =
ǫF√

1 + r2/ℓ2
. (2.29)

Now that we have determined the radial profile µ(r) of the chemical potential we in prin-

ciple also know the value of the energy density ρ(r) and the pressure p(r) through the

relations (2.22). It is clear from this result that the chemical potential decreases as one

goes out to the boundary. It can not decrease arbitrarily, however, since the energy per

particle is always larger than the mass mf . Namely, when µ = mf the Fermi momentum

kF vanishes and so do the energy density and pressure. We conclude therefore that ρ(r)

and p(r) will go to zero at a finite value R of the radius, namely when

µ(R) = mf . (2.30)

It will be interesting to re-express the value of the radiusR in terms of the Fermi momentum

kF (0). Combining the equations (2.29) and (2.30) together with the standard relation

between kF and ǫF gives

R =
kF (0)

mf
ℓ. (2.31)

Hence, the size of the star in AdS units is a direct measure for how relativistic the fastest

particles are in its center. When the size of the star is of the order of the AdS radius ℓ

these particles are mildly relativistic, while they have ultra-relativistic velocities when the

star is much larger than ℓ. It is important to note that the Fermi gas has a sharp edge only

when the fermions are massive. For massless fermions the equation of state is simply that

of a relativistic gas, and the star will spread out with a dilute ”tail” towards the boundary

of AdS.10

10Of course when the density gets too low the hydrodynamic approximation breaks down.
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2.3.3 Total mass and particle number

The degenerate star-like object that we described in the previous subsections is the holo-

graphic dual of the boundary state |Φ〉 constructed in section 2.1. As a non-trivial check on

our hydrodynamic description one can verify that the particle number and mass agree with

the boundary calculations. We observe that the constant ǫF equals the chemical potential

defined with respect to the time t. This means that it can be identified with the Fermi

energy ǫF of the CFT

ǫCF T

F = ǫAdS

F (2.32)

The total particle number in the bulk is given by the integral

NAdS

F = Vd−1

∫ R

0
dr rd−1B(r)n(r). (2.33)

The factor B(r) comes from the volume form on the spatial section. Similarly, one obtains

the mass MAdS by integrating the energy density. Because MAdS is defined with respect to

the time coordinate t one has to include a redshift factor A(r). For the AdS metric (2.14)

the redshift factor A(r) cancels the measure factor B(r), and hence

MAdS = Vd−1

∫ R

0
dr rd−1ρ(r). (2.34)

To calculate NAdS

F andMAdS one has to insert the equations (2.21) and (2.22) for the particle

and energy density and include the redshift effect (2.28) into the chemical potential. The

resulting integrals can be performed analytically and (perhaps not surprisingly) precisely

reproduce the results (2.12) and (2.13) in the limit of large number of particles.

2.3.4 A comment on the validity of the hydrodynamic description

In general, a basic assumption of the hydrodynamic approximation is that the continuous

system under investigation is in local thermodynamic equilibrium. More precisely the hy-

drodynamic description is an expansion in (space-time) derivatives of local thermodynamic

quantities. As such, hydrodynamics is valid when the typical variation length is much larger

than the microscopic scales of the fluid. In particular it should be much larger than the

mean free path. In our case the “fluid” is actually a free gas, so the mean free path is

infinite or at most bounded by the AdS scale. This means that strictly speaking we are not

allowed to use hydrodynamics. In particular if we had considered time dependent configu-

rations, then there would clearly be a problem since our fermions are non-interacting and

there would be no restoring agent to bring them back to equilibrium.11 However for our

static, spherically symmetric situation the results derived by the hydrodynamic method

are reliable. This is indicated by the agreement of (2.10), (2.11) with (2.33), (2.34) and

could perhaps be made more quantitative along the lines of [26–28].

11Once we consider 1/N corrections the particles will become interacting and they will of course reach

equilibrium.
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2.3.5 Radial reconstruction

In the limit of a large number of fermions the hydrodynamic description in the bulk is more

convenient than keeping track of the exact quantum state (2.18). We saw in sections 2.1

and 2.2 that at the level of multiparticle quantum states we have a one-to-one correspon-

dence between the boundary and the bulk. This means that we should be able to construct

the analogue of the “hydrodynamic description” in the boundary CFT. In other words, we

would like to understand what is the CFT meaning of a hydrodynamic description of the

multitrace operator (2.2).

The hydrodynamic description of the gas in the bulk is partly encoded in the radial

density profile ρ(r) given by (2.22) and (2.28). How is ρ(r) related to the operator (2.2)?

The radial direction r does not have a direct meaning in the CFT, though in a sense it

corresponds to the “scale” of the excitation. One way to probe the scale direction is to

consider 2-point functions of operators in the CFT, evaluated on the state (2.2). The

separation of the two insertions of operators on the boundary controls how deeply in the

bulk we are probing: when the two operators are close to each other we are probing the

region near the boundary, while at larger separations of the boundary operators we probe

the interior and in particular the region where the fermionic gas lives. Hence if we compute

the 2-point function

〈Φ| Ψ(x)Ψ(y) |Φ〉

in the limit where the number of particles in |Φ〉 is large, we should be able to relate the

radial profile ρ(r) to the (x− y) dependence of this correlator.

Computing this correlator should be straightforward in the free c → ∞ limit and it

would be interesting to perform this computation, as this would be the first step before

considering the same problem including backreaction. We hope to revisit this question in

future work.

2.3.6 Fermions at finite temperature

It is not difficult to generalize the story to the case where the fermions are at non-zero

temperature. Let us assume that the fermions are in an ensemble characterized by the

average occupation number ξ(ǫ) for the one-particle states which are multiplied together

to make the analogue of the multi-trace operator (2.2).12 In the zero temperature case

the occupation numbers are given by the zero temperature Fermi-Dirac distribution ξ(ǫ) =

Θ(ǫF − ǫ), where Θ is the unit-step function. This distribution corresponds to the radial

profile (2.29) of the local chemical potential in the bulk. We denote the corresponding

density and pressure profiles by ρǫF (r), pǫF (r).

What happens if we consider a more general distribution ξ(ǫ) for the average occupation

level of the single-trace operators ? Notice that formally we can write any function ξ(ǫ)

12For simplicity we assume that we are in an ensemble where the average occupation level ξ(ǫ) depends

only on the energy of the state. This assumption guarantees that the configuration will be spherically

symmetric in the bulk.
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defined for ǫ ≥ 0 as a linear combination of Θ-functions in the following way

ξ(ǫ) = −
∫ ∞

0
dǫF ξ

′(ǫF )Θ(ǫF − ǫ) (2.35)

which can be proven by a partial integration, assuming that ξ vanishes at ǫF = ∞. Since

the fermions are non-interacting this implies that the bulk profile can be written as

ρξ(r) = −
∫ ∞

0
dǫF ξ

′(ǫF ) ρǫF (r) , pξ(r) = −
∫ ∞

0
dǫF ξ

′(ǫF ) pǫF (r) (2.36)

In particular for a thermal distribution in the grand-canonical ensemble at temperature β

and chemical potential µ we have

ξ(ǫ) =
1

eβ(ǫ−µ) + 1
(2.37)

Using (2.29), (2.36) and (2.37) we can compute the radial profile of the density (and

pressure) corresponding to a finite temperature fermion gas in AdS, before we consider any

backreaction. Let us notice that while the equations (2.36) seem to work for any choice of

ξ, the profile in the bulk will have a meaningful description in terms of a density profile

ρξ(r) only if ξ is sufficiently smooth.

It would be interesting to compute the entropy of a thermal ensemble from the fluid

configuration in the bulk. For large quantum numbers this entropy should agree with

the exact boundary computation of the entropy in terms of the quantum states of the

single-trace operators.

Finally, from the relation (2.36) it should be clear that the mapping between pertur-

bations of the bulk density profile and the boundary is non-local, as expected from the

general framework of AdS/CFT.

2.4 Rotating star

As a straightforward generalization and as a further test of the hydrodynamic approxima-

tion we will now try to incorporate rotation into the system. For simplicity we focus on

AdS5 and we take the metric to be

ds2 = −
(

1 +
r2

ℓ2

)
dt2 +

(
1 +

r2

ℓ2

)−1

dr2 + r2(dθ2 + sin2 θdφ2 + cos2 θdψ2). (2.38)

The range of the variable θ is [0, π/2]. In order to put angular momentum into the system

we need to take a rotating fluid, and there is an obvious question whether or not the

rotation is uniform. In four dimensional flat space it is claimed in [29, 30] that uniform

rotation minimizes the mass of the star. We are going to try to do the same thing for the

five-dimensional AdS case.

The energy momentum tensor still equals

Tµν = (ρ+ p)uµuν + pgµν (2.39)

where now p and ρ will be functions of both r and θ, and

uµ = U−1(1, 0, 0,Ωφ,Ωψ) (2.40)
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where

U =

((
1 +

r2

ℓ2

)
− r2 sin2 θΩ2

φ − r2 cos2 θΩ2
ψ

)1/2

. (2.41)

Conservation of T implies

0 = U2∂rp+
r

ℓ2
(p+ ρ)(1 − ℓ2Ω2

ψ cos2 θ − ℓ2Ω2
φ sin2 θ)

0 = U2∂θp+ r2(p+ ρ)(Ω2
ψ − Ω2

φ) sin θ cos θ. (2.42)

These equations are very simple, they are equivalent to

0 = ∂rp+
∂rU

U
(p + ρ)

0 = ∂θp+
∂θU

U
(p + ρ). (2.43)

We can now immediately solve for the star, the solution simply reads

µ(r) =
ǫF

U(r)
(2.44)

If Ωφ,Ωψ depend non-trivially on r, θ this simple solution is no longer correct.

Given the exact solution, we wish to write expressions for the mass and two angular

momenta. These are all related to Killing vectors ξµ and the conserved charges boil down to

Q[ξ] = 4π2

∫
ξµ Tµ0

(
1 +

r2

ℓ2

)−1

r3 sin θ cos θ dr dθ. (2.45)

In particular, we obtain for the mass

M = 4π2

∫
r3 sin θ cos θdrdθ

(
−p+

1 + r2/ℓ2

U2
(p+ ρ)

)
(2.46)

and for the angular momenta

Jφ = −4π2

∫
r3 sin θ cos θdrdθ

Ωφr
2 sin2 θ

U2
(p+ ρ). (2.47)

and

Jψ = −4π2

∫
r3 sin θ cos θdrdθ

Ωψr
2 cos2 θ

U2
(p+ ρ). (2.48)

These are rather difficult expressions, which simplify quite a bit if we put

Ωφ = Ωψ =
ω

ℓ
. (2.49)

One can then explicitly do the relevant integrals, and we obtain

M =
ℓ4

120

(ǫF −mf )
4(4ǫF +mf − 5mfω

2)

(1 − ω2)3
(2.50)

and

J = −ℓ
6(ǫF −mf )

5ω

60(1 − ω2)3
. (2.51)
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Let us now describe the rotating degenerate state in the boundary CFT. For this

purpose we choose a U(1) subgroup in one of the two SU(2) factors. To be specific, let us

consider a rotation associated with, say, a simultaneous right handed rotation in φ1 and

φ2. The corresponding quantum number is

j = m1 +m2. (2.52)

Single particle states are characterized by their angular momentum l and energy E0 =

∆0 + n. When n is fixed but l is left free j takes the following values

− n ≤ j ≤ n, (2.53)

but remains even (odd) when n is even (odd).

We describe the rotating degenerate state by introducing an angular velocity ω which

acts as a ”chemical potential” for the quantum number j. This means that for a given

Fermi energy ǫF all states are being occupied which obey the inequality

n+ ∆0 − ωj ≤ ǫF ℓ. (2.54)

Thus the effect of the rotation is to tilt the Fermi surface to favor positive values of j.

To count the total number of particles contained in this rotating degenerate many

particle state we have to add all one particle states labeled by n and j that satisfy the

inequality (2.54). As a preparation, let us count how many single particle states exist for

given values of n and j. This is most easily done by making use of a generating function

for the symmetrized tensor products of the vector representation of SO(4). One can easily

convince oneself that this generating function is given by

1

(1 − qz)2(1 − qz−1)2
, (2.55)

Here q keeps track of n, while z keeps track of the j quantum number. Picking the term

proportional to qnzj gives the following degeneracy

N (n, j) =
1

4

(
(n+ 2)2 − j2

)
(2.56)

Note that for even (or odd) n the highest number of states occurs at j = 0 (or j = ±1).

For j = ±n one finds precisely one state, as expected.

This result can now be used to count the number of particles in the rotating degenerate

state for a given chemical potential ǫF . We will do so in the limit of many particles, so

that we can replace the summation over the quantum numbers n and j by integrals. In

fact, for this purpose it is convenient to replace n + 2 simply by n. This leads to the

following expression

N(ǫF , ω) =
1

2

∫

DǫF ,ω

N (n, j) dn dj. (2.57)

where DǫF ,ω denotes the integration domain bounded by (2.54), (2.53) and n ≥ 0. The

factor of 1/2 is due to the fact that the values of j are only even or odd. The integrals are

straightforward but somewhat tedious. After some work we find

N(ǫF , ω) =
ℓ4

24

(ǫF −m0)
4

(1 − ω2)2
(2.58)
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We see that for a given chemical potential the number of particles increases due to the

rotation. Note further that in the limit ω → ±1 the number of particles diverges. This can

be understood from the fact that in this case all states with j = ±n are being counted for

arbitrary values of n.

The mass and angular momentum can be obtained in a similar way as integrals over n

and j over the domain DǫF ,ω. For the mass one has to sum up the energy ǫ = (n+∆0)/ℓ for

all particles contained in the rotating degenerate state. This leads to the integral expression

M =
1

2ℓ

∫

DǫF ,ω

(n+ ∆0)N (n, j) dn dj. (2.59)

Performing this integral is again straightforward. The final result can be organized in the

following form

M =
ℓ4

30

(ǫF −m0)
5

(1 − ω2)3
+
m0ℓ

4

24

(ǫF −m0)
4

(1 − ω2)2
. (2.60)

This result should be compared to the case without rotation given in (2.11). The last term

represents the contribution of the mass m0 for all the particles, whose number is given

in (2.58), while the first term gives the sum of all the n quantum numbers. We note that

the modification in the mass due to the rotation is again given in terms of inverse powers

of (1−ω2), and diverges for ω → ±1.

Finally, let us come to the angular momentum J . The total angular momentum carried

by the particles in the rotating degenerate state is represented by again a tedious but

fortunately straightforward integral

J =
1

4ℓ

∫

DǫF ,ω

j N (n, j) dn dj. (2.61)

It yields the following result

J =
ℓ4

60

(ǫF −m)5

(1 − ω2)3
ω (2.62)

Note that |J | < M in general, and only when ω → ±1 the ratio |J |/M → ±1.

The results (2.60), (2.62) for the mass and angular momentum computed in the con-

formal field theory agree with the hydrodynamic computations (2.50), (2.51).

3 Including interactions

3.1 The scaling limit

The discussions of the previous section are accurate if we take the c→ ∞ limit keeping ∆,

NF and ∆0 fixed. In that limit the system is free as interactions can be ignored due to ’t

Hooft factorization. However what we have constructed so far is a trapped fermionic gas

rather than a star. To turn the gas into a star we have to include gravitational backreaction.

This can be achieved by scaling ∆0 and NF (and as a result ∆) appropriately at the same

time that we send c to infinity.

To determine what is the precise scaling limit we should take, we consider the picture

in the bulk. The first condition we impose is that the radius of the star is of the order of the
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AdS scale ℓ.13 Assuming that equation (2.31) is a good estimate for the order of magnitude

of the size of the star even after backreaction,14 we see that this condition implies

kF
mf

=
nF
∆0

= fixed (3.1)

The second condition is that we want to have appreciable gravitational backreaction. This

can be translated to the statement GMℓ2−d ∼ O(1). Newton’s constant is related to the

central charge by G ∼ c−1ℓd−1. So we find that the conformal dimension of the composite

operator must satisfy
∆

c
= fixed (3.2)

where we used the identification ∆ = Mℓ. From equation (2.4) and (3.1) we find that for

this to be true we have to take

nF ,∆0 ∼ c
1

d+1

In this limit the number of particles (2.3) goes like

NF ∼ c
d

d+1

In other words we want to study a specific class of composite multitrace operators in the

limit c→ ∞ , ∆ = εc where ε is kept fixed. When ε≪ 1 the system is weakly interacting.

We want to turn on ε up to values of order 1 where interactions become important.15

Since in this limit the number of particles becomes large, it is conceivable that the ’t

Hooft factorization might fail in a drastic way. In terms of Feynman diagrams in a gauge

theory this can happen because we are scaling the number of external lines of a diagram

with N so the usual N -counting rules may not apply. Let us describe the problem in some

more detail: consider the correlation functions of multitrace operators whose size we keep

fixed in the large N limit. As far as interactions between distinct single trace constituents

are concerned, the dominant diagrams are the disconnected ones, which correspond to the

free limit discussed in section 2. Connected planar diagrams involving interactions between

various single trace components of the multitrace operator are suppressed by powers of 1
N

relative to the disconnected ones and non-planar diagrams by even higher powers of 1
N .

Now let us imagine scaling the size of the multitrace operators as we send N → ∞. In

order to have nontrivial interactions at large N we want to scale the size of the multitrace

operators in such a way as to compensate for the 1
N suppression of connected planar

diagrams (connecting the various single trace components of the multi-trace operators).

Our goal is to work in a limit where these leading connected planar diagrams are of the

same order as the disconnected ones. The danger now is that since in this limit the planar

connected diagrams became as important as the disconnected ones, then the same could

happen for non-planar diagrams. This would imply that effects of quantum-gravity would

13By this we mean that as c→ ∞ the radius of the star scales like as R ∼ c0ℓ.
14This assumption will be proven to be self-consistent after we actually compute the backreaction.
15Let us note that even though in our limit the particles become very heavy (since their rest mass scales

like ℓ−1c
1

d+1 ), they are parametrically lighter than the Planck mass which scales like ℓ−1c
1

d−1 .
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become important in the bulk. However we will argue below that this is not the case and

the planar diagrams remain the important ones.

It is perhaps more intuitive to address this question from the bulk point of view. In

theories with a gravitational dual the planar interactions on the boundary are mapped

to tree level supergravity diagrams in the bulk. The c → ∞ limit corresponds to sending

G→ 0 in AdS units. In this limit the tree level interaction between any two particles (whose

mass is kept fixed) will vanish. In our double scaling limit we are taking the number and

masses of particles to be large so that even though G → 0 the total backreaction remains

finite. Moreover the various factors contribute in such a way that the backreaction receives

contributions from tree level diagrams only, as we explain in the next subsection. This

implies that the planar approximation remains reliable in this limit.

3.2 Interacting quantum states in AdS

Let us now consider the many-body state (2.18) in the scaling limit of the previous sub-

section, in which we have to take into account the gravitational interactions between the

fermions. It is intuitively clear that in the limit of large number of fermions per unit

volume, the most efficient way to analyze the interactions is by working in the hydrody-

namic description of section 2.3, but this time incorporating the gravitational backreaction

of the fermionic fluid. This approach will be pursued in subsection 3.4. For now we

will consider the interactions from a more microscopic point of view, in order to under-

stand the validity of approximations involved in going from the exact to the coarse grained

hydrodynamic description.

A first simplification is that in our scaling limit (and for theories with a semi-classical

gravity dual) we can ignore processes which change the number of fermions. In a relativistic

system the number of particles does not have to be conserved. If we put a certain number

of fermions in AdS and then turn on interactions it is not guaranteed that their number

will remain constant. Unless the fermions are protected by a conservation law, there will

be processes which can change their number, as well as processes which produce all kinds

of other particles such as gravitons etc. In principle all of these have to be taken into

account. However in our scaling limit the fermionic gas becomes effectively long lived

i.e. the rate of creation and annihilation of particles becomes negligible. This is due to

the fact that at large c interactions are suppressed. In principle this suppression could

be compensated by large combinatoric factors due to the large number of particles, but

as we will discuss in more detail in section 6, these factors work out in such a way that

the processes which change the particle number become subleading at large c, relative to

processes responsible for the total gravitational backreaction of the fermions. Because of

this, in the rest of this section we will only focus on interactions which do not change the

number of particles, i.e. on processes with only NF incoming and NF outgoing fermions

and no other external particles.

Second, we will assume that the only low lying fields in the bulk are the graviton,

described by the Einstein-Hilbert action, minimally coupled to a fermionic field ψ of mass
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Figure 1. Tree level gravitational interaction between two fermions.

mf .
16 We will assume that there are no other types of particles or forces in the bulk. Clearly

this is a very drastic approximation which however captures the qualitative behavior of

the phenomena we want to study without unnecessary complications. It would be very

interesting to study further whether a specific AdS/CFT setup can be found where such

a simple bulk Lagrangian can be realized (at low energies), or at least a setup in which it

correctly captures the qualitative physics of degenerate fermionic states. We present some

first discussions along these lines in section 6.

We now want to see that in our scaling limit the 1
c suppression of interactions combines

with the enhancement from the large number of particles in such a way that only the tree

level interactions (or equivalently planar interactions) become important. To illustrate this

point we focus on one particular physical observable as an example: we will try to estimate

the total energy of the fermions including their gravitational interactions. So let us consider

a bulk state |Φ〉 corresponding to NF fermions in the free theory. It satisfies

H0|Φ〉 =
∆0

ℓ
|Φ〉

where H0 is the Hamiltonian for a free fermionic field in AdSd+1. When we include in-

teractions we have to use the full Hamiltonian H = H0 + Hint where Hint includes the

coupling between fermions and gravitons and the self-interactions of the gravitons and H0

has to be extended to include the quadratic part of the Einstein-Hilbert action for propa-

gating gravitons. The corrected energy ∆/ℓ can be computed by an expansion in Feynman

diagrams in the bulk.

For example, consider two fermions in AdS with energies E1, E2 and wavefunctions

ψ1(x), ψ2(x). To leading order the total energy is the sum of the energies. To compute the

first correction to this energy we have to compute the tree level gravitational interaction

between them. In the Born approximation this is given by the diagram shown in figure 1,

where we have to use the graviton and fermion propagators in AdSd+1. In our scaling limit

this diagram is proportional to

G
m1m2

ℓd−2
∼ c−

d−1
d+1

16There may be interaction terms for the field ψ, but if their strength is controlled by c in the standard

way (i.e. a vertex with n fermions is suppressed by a factor of c
2−n

2 ) then the qualitative results of this

section remain the same. For simplicity we will ignore such terms in what follows.
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Figure 2. 2-body, 3-body etc. interactions at tree level and higher loop interactions.

so it goes to zero. Higher order diagrams between two fermions are suppressed by further

powers of 1
c , so they all become negligible in the large c limit. Hence if we only had a finite

number of particles the backreaction would be unimportant.

If we have NF fermions then to compute the correction to the energy (or the conformal

dimension of the dual operator) δ∆ = ∆−∆0 we have to sum over many kinds of diagrams

as shown in figure 2,17 where as we explained before we only consider diagrams with the

same number of fermions in the past and future infinity. Due to the non-linearities of

general relativity we not only have 2-particle interactions but also n-particle ones for all n

as depicted in the diagram. We have to sum up all these diagrams to get the right answer.

The correction to the energy of the state can be schematically written as

δ∆ =

∞∑

k=2 , L=0

δ∆L
k

where δ∆L
k denotes the contribution of diagrams where k fermions are involved in the

interaction and L is the number of loops.

We will now see how diagrams of different types scale in our limit. Going back to the

single graviton exchange between a pair of fermions, but now summing over all possible

pairs, we find that the correction to the energy is

δ∆0
2 ∼

∑

i6=j

G
mimj

ℓd−2
∼ c

ℓ

where we used that NF ∼ c
d

d+1 and m ∼ c
1

d+1 . In other words

δ∆0
2

∆0
∼ O(1)

so the correction is of the same order as the original energy of the system ∆0 and remains

important even in the large c limit. The suppression that we found earlier has been com-

pensated by the large number of pairs that we have to sum over. On the other hand,

loop diagrams between pairs of fermions are suppressed by additional power of 1
c and are

unimportant in our scaling limit.

17Only connected diagrams have to be considered for the computation of ∆. The disconnected diagrams

can be resummed into the exponential in e−it(H0+Hint)|Φ〉 = e−i(∆/ℓ)t|Φ〉.
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For a general diagram with L loops, k fermions involved in the interaction (i.e. k

ingoing and k outgoing ones), VF fermion-fermion-graviton vertices, and Vn vertices of

n-graviton type, we have the following topological constraints

VF +
∑

nVn = 2Ig , 2VF = 2IF + 2k , L = IF + Ig − VF −
∑

Vn + 1

where Ig, IF denote the number of internal graviton and fermion lines. Now let us count

powers of c of these diagrams. Each external line contributes a factor of (NF mf ) which in

our scaling limit is proportional to c. Each n-graviton vertex contributes a power of c1−
n
2

and each of the VF vertices a factor of c−
1
2 . So in total the powers for a diagram are

δ∆L
k ∼ ck+

P

(1−n
2 )Vn−

VF
2

Using the three conditions that we found above this becomes

δ∆L
k

∆0
∼ c−L

So we find that that only L = 0 (tree level) diagrams contribute significantly at large c.

The conclusion is the following: in our double scaling limit we have contributions from

diagrams of all orders due to the non-linear nature of general relativity, but only tree level

ones. In this sense our system becomes (semi)-classical, though nonlinear.

3.3 From quantum states to fermionic fluid

Clearly summing up all such diagrams between fermions is not the most efficient way to

analyze the problem and an approximation method would be desirable. In this section we

review some basic ideas which are often used in treatments of many-body systems and which

may clarify the conceptual steps in going from the quantum many-particle description in

the bulk to the hydrodynamic description and the TOV equations of the next subsection.

The reader who is not interested in these issues can skip this subsection and go directly to

section 3.4.

In general, in a many-body quantum problem we first want to determine the ground

state wavefunction and energy, and then perhaps to study small excitations around it.

The simplest example to consider is NF non-interacting fermions moving in an external

potential. In this case we first compute the energy levels ǫi for a single fermion in this

potential and the corresponding wavefunctions ψi(x). The ground state of the many-

fermion system is then described simply by filling up these orbitals consistently with the

Pauli exclusion principle. The wavefunction is a Slater determinant of the one-particle

wave functions

ΨNF
(x1, . . . , xN ) =

1√
NF !

∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) . . . ψNF
(x1)

ψ1(x2) ψ2(x2) . . . ψNF
(x2)

. . .

ψ1(xNF
) ψ2(xNF

) . . . ψNF
(xNF

)

∣∣∣∣∣∣∣∣∣
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and the total energy is given by the sum of the individual energies

Etot =

NF∑

i=1

ǫi

When we turn on interactions between the fermions the situation is not as simple,

since it is no longer true that the many-body state can be constructed from the knowledge

of single particle energy states. More precisely, single particle energy states, or “orbitals”

are not even well defined in an interacting system of fermions. By adding or removing

a fermion we affect the wavefunctions of all other fermions in a complicated way, which

in turn influences the available energy levels for the fermion under consideration. Hence

in principle we have to solve the coupled problem of determining the wavefunction for all

fermions at once. This also means that the ground state cannot necessarily be written as

a Slater determinant.18

A typical problem of this type is finding the ground state of a polyelectronic atom. That

problem is quite similar to finding the ground state of our fermionic star, where the role of

the attractive Coulomb force from the nucleus is played by the AdS gravitational potential

and the electromagnetic interactions of the electrons correspond to the gravitational force

between the fermions (though the latter is attractive). As we know, solving Schroedinger’s

equation for a polyelectronic atom is not possible analytically and we have to address the

problem using various approximation methods. We have to do the same for our system.

In our system the interaction between any two particular fermions is negligible in the

large c limit due to the 1
c suppression. However since the number of fermions is also very

large the effect of all of the other fermions on a single fermion can be appreciable. This

type of many-body problem can usually be treated by mean field theory methods. We

replace all interactions on a given fermion by an effective external field, which has to be

determined in a self-consistent way, as we explain below.

3.3.1 The Hartree-Fock approximation

In many-body problems the Hartree-Fock approximation is often employed. Its basic as-

sumption is that the ground state of the many-fermion system can be written as a single

Slater determinant |Ψ〉 of one-fermion orbitals in some appropriately chosen external po-

tential, which is determined in a self-consistent manner. One then minimizes the norm of

〈Ψ|H|Ψ〉 with respect to the single-particle orbitals, where H is the full Hamiltonian. This

leads to the Hartree-Fock equations for the single-particle orbitals ψi and the corresponding

energies ǫi.

In general the physical meaning of the single-particle energies ǫi in the Hartree-Fock

approximation is not transparent: for example if we try to add one more fermion to a

previously unoccupied state ǫj , then the energy of the new state will not be exactly equal

to Etot + ǫj . This is due to the fact that when we add a fermion all other fermions will

rearrange themselves and in principle one has to solve the Hartree-Fock problem again for

NF + 1 fermions, which will introduce corrections to the energy, additional to the naive

18However it can be written as a superposition of Slater determinants.
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estimate Etot + ǫj. For the same reason exciting a fermion from the state ǫi to the state ǫj
will cost energy equal to ǫj − ǫi plus corrections due to rearrangement.

Nevertheless in the limit of large number of fermions the aforementioned corrections

due to rearrangement become negligible, at least for certain many-body systems. This is

sometimes called “Koopmans theorem”, which basically states that in the limit of large

number of particles we can treat any given one of them as a “probe” and define its energy

as if it had negligible backreaction on the rest of the particles. Hence in this limit the

excitation energies of a single fermion are simply determined by the Hartree-Fock spectrum

ǫi, by taking the difference of the energy of the final minus the initial state. Similarly if

we think of constructing the ground state by gradually adding fermions and rearranging

them to their lowest available energy state, then ǫF would be the energy of the last added

fermion. Notice that these statements hold only if we talk about changes to a few numbers

of fermions relative to the total number of them.

Within the context of the Hartree-Fock approximation we can define a notion of single

particle density of states, even for a system of interacting fermions

g(ǫ, ǫF ) ≡ dN

dǫ
(ǫ, ǫF ) (3.3)

which is now a function of the “Fermi energy” ǫF . This function encodes the density of

the single-particle wavefunctions of the Hartree-Fock solution with corresponding energies

ǫi. We call Fermi energy ǫF the highest energy of the occupied states and N(ǫ, ǫF ) is the

number of occupied single-particle states with energy lower than or equal to ǫ. Clearly we

have NF = N(ǫF , ǫF ). In the limit of large number of particles, where Koopmans theorem

or the probe approximation holds, the function g(ǫ, ǫF ) can be determined operationally

by doing “spectroscopy” on the state, as follows: we consider the system in its ground

state. We hit the state by a photon coupled to the fermions and measure the absorption

spectrum. This gives information about the energy differences between the single fermion

states (assuming that Koopmans theorem holds) and in this way we can reconstruct the

function g(ǫ, ǫF ).

The total number of fermions can be written as

NF (ǫF ) =

∫ ǫF

ǫmin

dǫ g(ǫ, ǫF ) (3.4)

where ǫmin is the lowest of the single-particle states.19 But now it is important that the

total energy of the system Etot 6=
∫ ǫF
ǫmin

dǫ ǫ g(ǫ, ǫF ). This is due to the interactions between

the fermions and the rearrangement issues which cannot be ignored if one tries to build

up the ground state by adding fermions gradually, since this process involves all of the

fermions and clearly goes beyond the “probe” limit. However this can still be done for the

last added fermion, so the following is still true

dEtot

dǫF
= ǫF g(ǫF , ǫF ) (3.5)

19Notice that due to the interactions the energy ǫmin can be low, for example lower than the rest mass of

the fermions.
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It is clear that for our problem, that is, for determining the ground state of a large

number of gravitationally interacting fermions in AdS, the Hartree-Fock method is applica-

ble and moreover the assumptions of Koopmans theorem are satisfied. This means that the

Hartree-Fock orbitals should be really thought as the possible quantum states of a fermion

moving in the gravitational background produced by rest of the fermions and the density

of states (3.3) describes the distribution of fermions with various energies, generalizing the

non-interacting density of state (2.13).

In practice we will not apply the Hartree-Fock method, since it is still too complicated

when the number of fermions is large. As we explain below, a further approximation in

addition to the Hartree-Fock can be made, which leads naturally to the TOV equations.

3.3.2 Fermion fluid and Thomas-Fermi approximation

Even after imposing the Hartree-Fock approximation we can make a further simplification

as follows: instead of solving for the ground state Slater-determinant wavefunction, we can

only look for the fermion number density n(x) in the ground state20

n(x) =

∫
ddx2 . . . d

dxN |Ψ(x, x2, . . . , xNF
)|2 (3.6)

which satisfies
∫
ddxn(x) = NF . Of course n(x) carries less information than the actual

wavefunction but it is easier to determine than Ψ. We express the kinetic and potential

energy of the fermions in terms of n(x).21 Minimizing the energy with respect to n(x)

determines the fermion density profile and the energy of the ground state. This is the

Thomas-Fermi approximation. In many systems the Thomas-Fermi approximation be-

comes asymptotically exact in the limit of large number of particles. As we will explain

later, the hydrodynamic approximation and the TOV equations in the bulk is the equiv-

alent of the Thomas-Fermi approximation (or rather its relativistic generalization) for the

quantum interacting fermions of the previous sections, also see references [26–28].

3.4 TOV equations in the bulk

After these general comments we return to what we would have naively done to deal with

the gravitational backreaction of a large number of fermions: we revisit our hydrodynamic

formalism of section 2.3, but now taking into account the gravitational backreaction of the

fermionic fluid. We will explain how the hydrodynamic approximation is related to the

Hartree-Fock and Thomas-Fermi approximations in the next subsection

We have to solve Einstein’s equations with cosmological constant coupled to matter

Rµν −
1

2
gµνR+ Λgµν = 8πGTµν

20In this section we think of fermions moving in flat d-dimensional space. If we are in curved spacetime

then the appropriate measure factors have to be included.
21For example for a system of many (non-relativistic) electrons moving in an external potential V (x) the

total energy in the Thomas-Fermi approximation would be

ETF (n) = K

Z

d3xn(x)5/3 +

Z

d3xV (x)n(x) +
e2

2

Z Z

d3xd3y
n(x)n(y)

|x− y|

.
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where the source is a perfect fluid

Tµν = (ρ+ p)uµuν + pgµν

and ρ, p are determined by the flat space equation of state (2.22) for a degenerate fermionic fluid.

As before we look for static, spherically symmetric solutions, so we write the metric in

the general form

ds2 = −A(r)2dt2 +B(r)2dr2 + r2dΩ2
d−1. (3.7)

We parametrize the functions A(r) and B(r) in terms of two new functions M(r) and

χ(r) as

A2(r) = e2χ(r)

(
1 − CdM(r)

rd−2
+
r2

ℓ2

)
,

B2(r) =

(
1 − CdM(r)

rd−2
+
r2

ℓ2

)−1

, (3.8)

where Newton’s constant is contained in the coefficient

Cd =
16π G

(d−1)Vd−1
.

The Fermi gas is static, and hence we take ut = A(r) and all other components of uµ equal

to zero. In terms of M(r) and χ(r) the Einstein equations read

dM

dr
= Vd−1 r

d−1 ρ

dχ

dr
= Vd−1

Cd
2

(
ρ+ p

)
rB2 (3.9)

dp

dr
+
A′

A
(ρ+ p) = 0

These constitute the Tolman-Oppenheimer-Volkoff (TOV) equations.

We choose as boundary condition M(0) = 0, so that M(r) represents the contribu-

tion to the mass from the energy density inside a ball of radius r, and the total mass

is equal to M(R). By Birkhoff’s theorem the metric outside the star is given by AdS-

Schwarzschild. Hence,

χ(r) = 0, M(r) = M, for r ≥ R.

From (2.30) it follows that the radius R is determined by

1 − CdM

Rd−2
+
R2

ℓ2
=
(ǫF
m

)2
. (3.10)

Finally the total fermion number can be computed by the integral

NF = Vd−1

∫ R

0
dr rd−1B(r)n(r) (3.11)
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Let us now see how we can compute the density of single-particle states g(ǫ, ǫF ) from

the hydrodynamic configuration in the bulk. The energy ǫ of a fermion should be identified

with the redshifted energy of a fermionic particle in the bulk. At a given point in the bulk

we have fermions with various values of the local energy ranging from the fermion mass m

up to the local Fermi energy µ(r). So we can write the following formula for the density

of states on the boundary

N(ǫ, ǫF ) = Vd−1

∫ R

0
dr B(r) rd−1 n

(
ǫ

A(r)

)
(3.12)

g(ǫ, ǫF ) =
dN

dǫ
(ǫ, ǫF ) (3.13)

where n(ǫ) was defined in (2.21). Notice that the statement that Etot 6=
∫
dǫ ǫ g(ǫ, ǫF ) is

related to the statement in the bulk that the total mass is not equal to the sum of the

redshifted masses of the particles.

In fact, to show that the relation (3.5) is still valid one needs to use the Einstein

equations! One has

ǫF
dN

dǫF
= Vd−1

∫ R

0
dr rd−1

(
B ǫF

dn

dǫF
+
dB

dǫF
ǫFn

)

= Vd−1

∫ R

0
dr rd−1eχ

(
dρ

dǫF
+
dB

dǫF

ρ+ p

B

)

=

∫ R

0
dr eχ

(
dM ′

dǫF
+
dM

dǫF
χ′

)
=
dM

dǫF
. (3.14)

Here we used the identity (2.23), the relation (2.28), the TOV equations (3.9), the defini-

tions of A and B in terms of the functions M and χ and the fact that at the edge of the

star n(R) = 0. Notice that above the local particle number density depends on the radius

as n(r) = n (ǫF /A(r)).

In the next section we will use the TOV equations to calculate the corrections to the

mass, the particle number and the density of states defined through the relations (2.12).

3.5 Relation between quantum description and TOV approach

What is the precise relation between the analysis in terms of quantum states and Feyn-

man diagrams in section 3.2 and the hydrodynamic TOV equations (3.9)? The Einstein

equations coupled to a perfect fluid are in a certain sense the mean field/Thomas-Fermi

approximation for a system of fermions interacting gravitationally. This correspondence

is of course implicitly used in the standard treatment of astrophysical neutron stars, in

which the star is treated as a classical self-gravitating ball of fluid governed by a fermionic

equation of state and not as a quantum bound state of individual fermions. The logic in

going from the quantum bound state to the fluid description was outlined in subsection 3.3.

The equivalence between these two approaches can be made more precise. In [26, 27]

the following problem was analyzed: the authors considered the Schroedinger equation

for NF fermions mutually interacting with a Newtonian attractive gravitational potential.

They passed to the Thomas-Fermi description22 replacing the ground state wavefunction

22With a relativistic kinetic term.
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by the fermion density n(x). They then showed that in the ground state the fermion

density satisfies the (non-relativistic limit of) the TOV equations. In general relativity

one should also include higher order forces in the Schroedinger equation. Presumably the

Thomas-Fermi approximation would then reproduce the full relativistic TOV equations.23

In [28] a related analysis was followed: the starting point is a static spherically symmet-

ric metric parametrized by two arbitrary functions A(r), B(r) as in (3.7). One solves the

Dirac equation for fermions moving in this background and places NF of them in the lowest

available states. Then one computes the stress energy tensor produced by these fermions

and uses it as a source for Einstein equations for the metric (3.7). Then one shows that in

the limit of large NF solving this problem self-consistently is equivalent to solving Einstein

equations coupled to a perfect fermionic fluid, that is the TOV equations (3.9).

The reason that we mention all these issues is the following: as explained above, in the

bulk we have an intuitive understanding of how to start with the microscopic many-fermion

quantum description and truncate it to the Thomas-Fermi type approximation of the TOV

equations coupled to a fermionic fluid. What is the equivalent procedure on the boundary?

In the boundary CFT the description in terms of individual quantum states for the fermions

is easier to understand, at least in the c → ∞ limit before taking the backreaction into

account. It would be very interesting to perform the equivalent “coarse graining” on the

boundary and to introduce the boundary analogue of the density of fermions (3.6) and the

TOV equations. The main obstacle in this direction is understanding how to deal with the

“radial direction” in boundary language, see also the discussions in subsection 2.3.5. We

hope to revisit these issues in future work.

3.6 Quantum states vs. classical geometries in AdS/CFT

Before we close this section we would like to explain an important conceptual point. In

AdS/CFT we have an equivalence of two quantum systems, which means that their Hilbert

spaces are isomorphic. In particular every quantum state on the boundary should be dual

to a quantum state in the bulk. On the gravity side and at low energies, the Hilbert space

can be approximated by the Fock space generated by the semiclassical quantization of the

supergravity fields. At infinite N these fields become free, so we simply have to canonically

quantize free fields around an AdS background. This semiclassical quantization leads to

a Fock space which is isomorphic to the low-conformal dimension Hilbert space of the

boundary theory, as we discussed in detail in the previous subsections.

Our many-particle state is a quantum state: it is a many-particle state constructed

by acting on the vacuum with many creation operators of the semi-classically quantized

free fields in AdS. Hence it should not be confused with a classical configuration in the

bulk, i.e. a classical supergravity solution. The latter should be thought of as a coherent

state where certain modes of the bulk fields have been coherently excited. In this sense

our star differs from the “boson stars” (see [31] and references therein) and other solitonic

configurations in the bulk. Instead, a bosonic analogue of our fermionic star would be, for

23However we should mention that one qualitative feature of the solution, the existence of a critical mass

- the Chandrasekhar bound, is also visible in the Newtonian gravity approximation.
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example, a finite temperature bosonic gas like the radiation star considered by Page and

Phillips in [32] or the “geons” of Wheeler [33].

Let us explain this in some more detail: the large N limit is usually thought of as

a classical limit. Of course no matter how large N is, if the energy of the state under

consideration is low enough then one would still see the quantization and the discreteness

of the spectrum. Let us now consider classical supergravity solutions in the bulk. Such

solutions have energy of order N2 as can be seen by the overall normalization of the bulk

action. However the opposite is not true: a state whose energy is of order N2 (at large N)

does not necessarily correspond to a classical supergravity solution. Our quantum states

are examples of this kind. The difference between the two types of states (coherent vs

multi-particle quantum states) is that while the total energy is the same (order N2), the

distribution of the energy to various modes is different: in the coherent states we have few

modes excited many times, while in our quantum states we have many modes excited few

times.24 The latter cannot be described by a classical field. More generally, it is important

to remember that the fermionic perfect fluid is not a “classical field” in the bulk, even

thought it is described by a classical density profile.

Perhaps a useful analogy to keep in mind is the difference between a classical electric

field and black body radiation. The former has non-vanishing energy density at the classical

level. By tuning the temperature of the black body radiation appropriately as ~ → 0 we

can end up with a finite classical energy density for the radiation. However there is no

sense in which the black body radiation can be described by a classical electromagnetic

field. The reason is that the energy is distributed in too many modes unlike what happens

in a coherent state.

4 Numerical solutions and gravitational collapse

4.1 Numerical results

We will now look for static, spherically symmetric solutions of the TOV equations (3.9).

These equations cannot be solved analytically and we have to resort to numerical inte-

gration. We present the numerical analysis for AdS5, i.e. d = 4. The qualitative features

of our results are the same for other values of d. As we explained in section 3.1 we are

working in the limit G5 ℓ
−3 → 0 , Mℓ → ∞, or in CFT language c → ∞,∆ → ∞. It is

more convenient to present the graphs in terms of rescaled dimensionless quantities which

stay finite in this limit. For the total mass and the total fermion number we define

M̂ ≡ ∆

c
=

8

π

G5

ℓ2
M , N̂F ≡ NF

c4/5

and for the fermion mass and local chemical potential in the bulk

m̂f ≡ ∆0

c1/5
=

(
8

π

G5

ℓ3

)1/5

(mf ℓ) , µ̂ ≡
(

8

π

G5

ℓ3

)1/5

(µ ℓ)

All hatted quantities are kept fixed as c = πℓ3

8G5
→ ∞.

24We are grateful to S. Minwalla for discussions on these points.
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Figure 3. Radial profile of the local chemical potential with (solid line) and without gravitational

backreaction (dashed line).
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Figure 4. Fermion number density, with and without backreaction.
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Figure 5. Mass function with and without backreaction. The limiting value as r/ℓ → ∞ is the

total mass M of the system.

4.1.1 A typical fermionic star

We first describe a star of typical values for the total number of fermions N̂F and fermion

mass m̂f . We plot the radial profile of the local chemical potential in the bulk and the

fermion number density in figures 3 and 4 respectively. The dotted lines in the same graphs

show what would have been the profiles for the same number of fermions in AdS without

gravitational backreaction. The edge of the star is the point where (2.30) is satisfied and

the density goes to zero. We can see from the graphs that turning on self-gravity moves

the fermions towards the center of AdS, as expected.

In figure 5 we plot the function M̂(r) introduced in (3.8), which asymptotes to the

total mass of the solution as r/ℓ → ∞. We see that turning on gravitational interactions
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Figure 6. Gravitational potential of the star (solid) vs that of empty AdS (dashed).
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Figure 7. Total mass (blue) and fermion number (red) vs chemical potential at the center of

the star.

lowers the total mass. The difference between the two curves can be understood as the

binding energy. Remarkably, we see that the binding energy is a very small percentage of

the total mass. This fact is not a peculiarity of the solution for the the particular choice

of N̂F , m̂F but is generally true for all of their possible values. In figure 6 we show the g00
component of the metric in our solution relative to that of empty AdS where we can see

the gravitational well produced by the star.

4.1.2 Families of stars and a critical mass

We now want to study a family of stars of increasing fermion number, keeping the fermion

mass m̂f fixed. For this we would like to find the self-gravitating solution of N̂F fermions

in AdS, as a function of N̂F . However when solving the TOV equations, rather than fixing

the total fermion number N̂F , it is technically more convenient to fix the local chemical

potential µ̂(0) at the center of the star and then integrate the equations outwards. Only

after the entire solution has been computed, can the number of fermions be evaluated

from (3.11).

Following this procedure we plot in figure 7 the mass and fermion number25 as a

function of the local chemical potential at the center of the star.

25Let us mention that while N̂F is of order one in this particular example, it does not mean that we have a

small number of fermions, since N̂F is a rescaled variable. The actual number of fermions is NF = N̂F c
4/5

which is large for c→ ∞.
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Figure 8. Mass vs Fermion number with (blue) and without (red) backreaction.
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Figure 9. Binding energy as a function of fermion number.
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Figure 10. Density of states at the Fermi energy ǫ̂F . The value of ǫ̂F where the density diverges

corresponds via relation (4.1) to the value of µ̂(0) where the mass reaches its highest value.

The most striking feature of the diagram is the existence of a critical value for the

mass and fermion number which is achieved for a certain value µ̂c of the local chemical

potential at the center of the star. This is the Chandrasekhar, or Oppenheimer-Volkoff

limit. It will be discussed in more detail in the next subsection but for now there are two

important points that we want to emphasize: first, the right way to read figure 7 is that

there are no static, spherically symmetric solutions of the TOV equations with a larger

number of fermions than that achieved by the solution at µc. If we insist on starting with

initial conditions on a spacelike slice, corresponding to a larger number of fermions, the

solution will inevitably become time-dependent and will presumably collapse. Second, as

we will explain below the solutions with µ̂(0) > µ̂c are unstable under radial perturbations

– 35 –



J
H
E
P
0
1
(
2
0
1
1
)
1
4
4

Figure 11. Total mass vs chemical potential and fermion mass.

and hence in a certain sense they should be considered unphysical. We will return to these

points in the next subsection.

In figure 8 we show the total mass as a function of the total number of fermions

(keeping m̂f fixed). In the same graph we can see what would be the total energy M̂0 of

the same number of fermions if they were placed in AdS without taking the self-gravitation

into account, as computed from (2.10) and (2.11). The difference between the two curves

is very small. In figure 9 we see the binding energy relative to M̂0. These diagrams reveal

a surprising feature of our system: the self-gravitating solution breaks down and becomes

unstable at a point where the binding energy is only a few percents of the total energy.

Finally we consider the interpretation of our solution in the Hartree-Fock picture on

the boundary. The Fermi energy on the boundary ǫF is defined by equation (2.28) so

we have

ǫ̂F = µ̂(0)
√
g00(0) (4.1)

In figure 10 we plot the density of states at the Fermi energy as a function of the Fermi en-

ergy ǫ̂F , which can be computed from (3.13). We see that approaching the critical point the

density of states blows up, which signifies a break-down of the Hartree-Fock approximation.

4.1.3 Dependence on the fermion mass

We now consider how the previous results depend on the fermion mass m̂f . In figure 11

we plot the total mass as a function of the fermion mass and the chemical potential. We

see that the critical mass and the value µ̂c at which criticality is achieved depend on

the fermion mass m̂f . The qualitative behavior is the following: for small fermion mass

criticality is achieved for higher values of the chemical potential, where the fermions are

in the relativistic regime, and the radius of the star (which we have not plotted) is large

relative to the AdS radius. For heavier fermions we have criticality in a regime where the

fermions are non-relativistic and the size of the star is smaller than the AdS radius. In

figures 12 and 13 we plot the mass and density of states respectively, as a function of the

Fermi energy and fermion mass.
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Figure 12. Mass vs Fermi energy and fermion number. The underlying pink graph is the result

without self-gravity.

Figure 13. Density of states at the Fermi energy vs Fermi energy and fermion mass. plotted

against the graph without backreaction.

4.2 The Chandrasekhar limit

The most important qualitative feature of our numerical results is the existence of a max-

imum value for the mass of a degenerate fermionic star. This value is achieved for a

specific critical local chemical potential µ̂c at the center of the star. It is possible to find

static spherically symmetric solutions with higher values of density at the center if we take

µ̂(0) > µ̂c, however it is important to notice that increasing µ̂(0) above µ̂c does not corre-

spond to increasing the total number of particles. As we can see from figure 7 the number

of particles has a maximum at the same value of µ̂(0) where the mass reaches its critical

value. Solutions with µ̂(0) > µ̂c correspond to a different radial distribution of roughly the

same number of particles. Moreover as we will argue below solutions with µ̂(0) > µ̂c are

unstable under radial perturbations.

What happens if we insist on looking for solutions with a larger number of particles?

We could do that by starting with initial data on a spacelike hypersurface with a total

number of fermions higher than the critical one. Then it is clear that these initial data will

evolve into a time-dependent solution describing a collapsing star. This is the point where

the degeneracy pressure of the fermions can no longer balance the gravitational attraction,

in other words the “Chandrasekhar limit”.
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Let us now turn to the stability of solutions with µ̂(0) > µ̂c. To check the stability we

have to linearize the equations of motion around the solution and compute the frequen-

cies of the normal modes ωn, which describe small oscillations around the solution with

time dependence of the form e−iωnt. In general the frequencies are real and the perturba-

tions are simply oscillating with time, while their amplitude remains bounded. If however

there is a linearized mode with imaginary frequency, that is with ω2 < 0, then we see

that the perturbation will grow exponentially with time implying that the initial solution

was unstable.

While we have not performed the linearized analysis, we summarize a general argument

(see for example [34]) which indicates that the solutions with µ̂(0) > µ̂c are unstable. Let

us say that we have a one-parameter family of static solutions characterized by the central

density µ̂(0). If we have a critical point dM̂
dµ̂ = 0 at µ̂c, then around that value, to first

order, we have two different solutions one with µ̂c and one with µ̂c + δµ̂ with the same

total mass. The change of the profile induced by δµ̂(0) can be thought of as a linearized

perturbation of the solution at µ̂c. From the fact that the total mass does not change

we conclude that for this perturbation at µ̂c we have ω2 = 0, i.e. we have a zero mode.

Generically we can assume that ω2 changes sign as we cross µ̂c. If we assume that the

solutions for µ̂(0) < µ̂c are stable then we conclude that ω2 < 0 for µ̂(0) > µ̂c. Hence these

solutions will develop a tachyonic mode past the critical point µ̂c. We expect that at the

subsequent critical points more modes may become unstable.

4.3 Endpoint of the collapse

In a realistic theory the endpoint of the collapse of a degenerate star depends on the

details of the particle spectrum, interactions, equation of state etc. For example in the

real world a white dwarf can collapse to a neutron star which in turn may collapse to more

(hypothetical) exotic states such as quark stars and eventually a black hole. Since we have

been mainly concerned with generic features of degenerate stars in AdS we cannot answer

this question in detail. However we notice that, at least for light fermions, the critical mass

is of the same order as that of a big black hole in AdS. It is reasonable to expect that

such an object is the most entropic one, for given total mass. This suggests that the final

endpoint of the collapse will be a big black hole in AdS.

Nevertheless we should mention that while the endpoint of the gravitational collapse

is very likely a black hole, the onset of the collapse itself does not have to do with black

hole physics. The onset of the collapse is marked by the failure of hydrostatic equilib-

rium for a large number of fermions and can be understood in terms of the low-lying

(super)gravity modes.

In principle it would be straightforward to compute numerically the time-dependent

solution corresponding to the collapse of a fermionic fluid in AdS towards a black hole.

In practice this problem is significantly harder than what we have done so far, since it

involves solving partial differential equations instead of ordinary ones (since the fields will

now depend on time and radius). We postpone the analysis of the time-dependent solutions

and the black hole formation to future work.
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Figure 14. Profile of the local Fermi momentum k̂F (r) for increasing values of µ̂(0) and the

convergence to a limit curve.

4.4 Scaling regime

In this section we will explore some features of the solutions deep inside the unstable regime

µ̂(0) ≫ µ̂c.

4.4.1 Limiting solution

At very large values of the chemical potential at the center one finds that the solution

starts to exhibit an interesting behavior: most of the radial profile of the chemical potential

approaches a limiting shape, while a sharp “spike” develops at the center of the star. This

is shown in figure 14, where we plot the local Fermi momentum as a function of the radius.

The Fermi momentum is very large at the center but rapidly drops to the limiting profile.

While the spike becomes sharper and sharper as we increase µ̂(0) the total mass contained

in it is finite (the same is true about the number of fermions in the spike), hence the total

mass of the solution remains finite.

One might worry that the spike is an artifact of the numerics, but one can actually

find an analytic solution which describes its limiting shape. In the limit where µ̂(0) → ∞
we can assume that all quantities have a simple scaling behavior as r → 0. Plugging a

power-law ansatz into the TOV equations and looking for a solution in the regime r → 0

(where the cosmological constant can be neglected) one can fix the scaling solution as

ρ(r) =
45

112π G

1

r2
+ O(r)

B2(r) =
7

4
+ O(r)

A2(r) = r
1
5 b3 + O(r)

(4.2)

where the constant b3 cannot be fixed by a local analysis.26 One can check that the

numerical solution of the spike approaches this analytic form in the limit µ̂(0) → ∞.

26More generally, the scaling solution in d+ 1 bulk dimensions is

ρ(r) =
1

r2
(b1 + O(r)) , B2(r) = b2 + O(r), A2(r) = r

1
d+1 (b3 + O(r))

where

b1 =
1

4πG

(d− 1)2(d+ 1)

(d− 1)3 + d− 3
, b2 =

(d− 1)3 + d− 3

(d− 1)3 − 3d + 1

and the constant b3 is arbitrary.
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Figure 15. Detail of 7 where we see the damped oscillations around M̂c ≈ 1.1230. This plot

corresponds to m̂f ≈ 0.95.
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Figure 16. In this plot the oscillations become more visible.

The fact that in the small r limit the TOV equations admit exact scaling solutions in

which the central density goes to infinity is a well known fact, see for example [35].

4.4.2 Oscillations of the mass

The second interesting feature of the regime µ̂(0) ≫ µ̂c is the following:27 in figure 7 we

see that in the limit µ̂(0) → ∞ the mass M̂ approaches a limiting value M̂c
28. However we

notice that the convergence is not monotonic, but rather the function M̂ (µ̂(0)) undergoes

small damped oscillations around the critical value M̂c. In figure 15 we plot the same

function at a different scale, in which the oscillations become more visible. This qualitative

behavior appears in many problems of similar kind.

In the limit µ̂(0) → ∞ these oscillations can be described by the following formula

M̂(µ̂) ≈ M̂c +Ae−γ log µ̂(0) cos(ω log µ̂(0) + δ) (4.3)

27This section was added to our paper after similar calculations were carried out in collaboration with

S. Bhattacharyya and S. Minwalla in [15]. K.P. would like to thank S. Bhattacharyya and S. Minwalla for

very useful discussions on these issues during the collaboration in [15]. We would also like to thank V.

Hubeny and M. Rangamani for very useful comments and suggestions regarding the scaling regime and for

bringing relevant literature to our attention.
28This limiting value depends on the fermion mass m̂f .
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By fitting to the numerical data we find the following values for these constants29

M̂c ≈ 1.230, A ≈ 0.582, γ ≈ 0.596, ω ≈ 0.973, δ ≈ 3.508

We will now explain that the formula (4.3) can be justified by analytic methods and

the damping constant γ and frequency ω can be determined exactly. Since this aspect is

not central to the rest of the paper we will be brief and refer the reader to [15, 36–39] for

more details. The main point is to consider the TOV equations as a dynamical system

with respect to the variable r. In this sense, the critical solution mentioned in the previous

subsection acts as an attractor fixed point (in the language of dynamical systems) in the

space of solutions of the TOV equations. The critical solution corresponds to µ̂(0) → ∞.

Solutions with very large but finite µ̂(0) are in a sense small perturbations of the critical

solution and hence their behavior can be understood by analyzing the TOV equations in

a linearized approximation around the critical solution. For small r the critical solution

is known analytically (4.2) and similarly the eigenvalues of small perturbations around it

can be analytically determined by performing a linearized analysis of the TOV equations

around the scaling solution. For our system the eigenvalues turn out to be

λ = −6

5
± i

4
√

6

5
(4.4)

By performing the matching carefully we find that these eigenvalues translate into the

following analytic values for the damping constant and frequency of the oscillations of

the mass

γ =
3

5
, ω =

2
√

6

5

which are in good agreement with the numerical values mentioned above. The small dis-

crepancies are presumably due to various inaccuracies in our numerics.

Before we close this section let us mention that while this oscillatory behavior is clearly

interesting, one should keep in mind that it takes place in the regime µ̂(0) ≫ µ̂c where the

solutions are unstable. It would be fascinating if there was a boundary interpretation of

the scaling behavior and the oscillations of the mass.

5 Boundary CFT

In this section we return to the boundary interpretation of the gravitational interactions

between the fermions. As we discussed in section 2, in the free limit the star is dual to

a composite multitrace operator (2.2). If we first fix the size of the operator and then

send c to infinity, this correspondence is precise. While the multitrace operator (2.2) is not

protected by supersymmetry (i.e. it is not a chiral primary), it is protected due to large

c factorization: each of its constituents are (descendants of) chiral primaries and are thus

protected. Moreover at infinite c the conformal dimension of composite operators is simply

given by the sum of individual dimensions.

29The precise values of the constants M̂c, A, δ will in general depend on the value of the fermion mass

m̂f . The reported values are for m̂f ≈ 0.95. On the other hand, the constants γ, ω are fixed in an

m̂f -independent manner and can be determined analytically as explained in the rest of this section.
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The interactions between the constituents start to become important in the regime

where we scale the (bare) dimension of the operator as ∆0 = ε c and keep ε finite. Now

we want to understand these interactions from the boundary point of view. We want to

work in a regime where the boundary theory has a semiclassical gravity dual, which implies

that the gauge coupling must be large (for example large λ≫ 1 in the N = 4 SYM). This

means that we cannot analyze the boundary theory perturbatively in the gauge coupling.

However even at strong ’t Hooft coupling the theory has an expansion in 1
c . As we will see

the 1
c expansion together with certain basic assumptions about the boundary CFT can be

used to capture some of the qualitative features of the system that we found in section 4.

In the free theory the conformal dimension of the operator (2.2) is dual to the energy of

the fermionic gas in the bulk. The correction to the energy of the gas due to gravitational

interactions, that is the binding energy, is related to the anomalous dimensions of operators

of the form (2.2), once 1
c corrections are taken into account. When ε→ 0 these corrections

become negligible but they are important when ε is of order 1. In a certain sense these

corrections are controllable as we turn on ε slowly.

The precise form of the 1
c corrections to the composite operators will depend on the

details of the conformal field theory. So far we have mainly considered the neutron star in

AdS, in a model where the only degrees of freedom consist of a massive fermion coupled to

general relativity. Of course, one of our main interests was to determine the dual description

of the neutron star and in particular to understand some microscopics of the neutron star

instability and its presumed collapse into a black hole. In order to achieve this, we need to

embed our discussion in a proper AdS/CFT duality, like e.g. the duality between N = 4

SYM theory and type IIB string theory on AdS5×S5. However, one immediately see that

this is potentially difficult. The mass of the fermion ℓ∆0 scales like N2/5ℓ in the limit we

consider, which is larger than the typical mass of an excited string state 1/ℓs ∼ (λ)1/4ℓ in

the ’t Hooft limit. Therefore, one expects that both massive string degrees of freedom, as

well as a large number of Kaluza-Klein modes of the massless string degrees of freedom,

should be included to properly discuss the physics of the neutron star.

Before discussing these issues in more detail, it is instructive to imagine a situation

where these additional degrees of freedom have somehow been decoupled. Though perhaps

unrealistic it still interesting to see how much physics such a toy model could capture. In

the rest of this section we will focus on a “toy model” CFT, where the only relevant fields

are the graviton and the fermion, up to a cutoff of the order of the Planck scale in the bulk.

5.1 Graviton exchange and first correction to anomalous dimensions

In the toy model setup the bulk physics is completely described by a massive fermion

coupled to general relativity. The corresponding field theory statement is that the only

low-lying “single trace operators” in the field theory are the operator Ψ and the stress

tensor Tµν , together with their conformal descendants. Of course we also have to include

their multi-trace composites, as required by crossing symmetry. However these do not

correspond to new fields in the bulk, but rather to multi-particle excitations of the basic

fields. For simplicity we will restrict attention to the case d = 4 only.
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In this simple context, it is possible to estimate the point where the instability will

appear, using known properties of the operator expansion of conformal field theories in

four dimensions. The idea is to consider the anomalous dimension ∆ of the composite

operator Φ as a function of particle number NF , and to determine when d∆/dNF changes

sign, which is the direct analogue of the computation we did in the bulk. Now in order to

compute the anomalous dimension of the operator Φ, we are going to use the fact that it

is built out of operators Ψ and their derivatives, and the relevant anomalous dimensions

can be extracted from correlations functions of Ψ with itself. To compute these correlation

functions, we will use the fact that in the OPE of Ψ with itself only the stress-tensor can

appear to leading order in 1
c , apart from multi-particle composites made out of Ψ. This

simplification may not be accurate in a complete unitary CFT but by assumption this will

happen in our toy model. Altogether this computation will therefore be a direct field theory

analogue of graviton exchange, where instead of graviton exchange we have the exchange

of a stress tensor in the intermediate channel of an OPE.

For future purpose we discuss the relevant computations in a slightly more general

setting. Thus, we consider two self-adjoint conformal primaries O1, O2. Using the OPE we

can define a composite operator : O1O2 : whose conformal dimension is ∆1 +∆2 to leading

order in 1/c

O1(x)O2(y) = . . .+ : O1O2 : (y) + . . . (5.1)

This form of the OPE, and the presence of an operator with the quantum numbers and

dimension of : O1O2 : can be extracted by performing a conformal block decomposition of

the 4-point function, if we assume that at infinite c it factorizes to a product of 2-point

functions.

At the first non-trivial order in 1/c the dimension of the operator : O1O2 : will be

∆12 = ∆1 + ∆2 +
δ12
c

(5.2)

where δ12 is the “anomalous dimension”. To extract δ12, we consider the 4-point function

〈O1(x1)O1(x2)O2(x3)O2(x4)〉 =
1

|x12|2∆1 |x34|2∆2
+ O

(
1

c

)
(5.3)

Here we assumed that the two-point function of O1 and O2 vanished to leading order in

1/c. Now let us see what happens at order 1
c . As explained above, we will only consider

the effect of a stress-tensor in some intermediate channel, e.g. the (12) → (34) channel.

The appearance of T in the OPE of O1O1 is controlled by the Ward identities and we have

schematically [40]

O1(x)O1(y) ∼ . . . + ∆1
T

|x− y|2∆1−4
+ . . . (5.4)

while

O2(x)O2(y) ∼ . . . + ∆2
T

|x− y|2∆2−4
+ . . . (5.5)

and also

T (x)T (y) ∼ c

|x− y|8 (5.6)
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O1(x1)

O1(x2)

O2(x3)

O2(x4)

Tµν

Figure 17. Conformal partial wave corresponding to the exchange of Tµν in the double OPE.

φ1(x1)

φ1(x2)

φ2(x3)

φ2(x4)

gµν

Figure 18. Graviton exchange Witten diagram.

From this we can compute the contribution of T and all of its descendants in the double

OPE (12) → (34) and we can write the result in terms of a “conformal partial wave.” The

final result is given in eqn (4.3) in [40]. Taking this result, expanding it in the (13) → (24)

channel, and isolating the logarithmic singularity in that channel leads to

δ12 = −∆1∆2

4c
(5.7)

For e.g. N = 4 SYM we have in the conventions of [40] c = N2−1
4 so the anomalous

dimension is

δ12 ≈ −∆1∆2

N2
. (5.8)

This has exactly the same dependence on ∆1, ∆2 and N as one would expect from a

bulk graviton exchange between two particles of mass ℓ∆1 and ℓ∆2 separated a distance

r ∼ ℓ i.e.

G
m1m2

ℓ2

This strongly suggests that one should also be able to determine that to leading order in

1/c the conformal dimension of Φ behaves as

∆(Φ) ∼ ∆ − a
∆2

N2
(5.9)

where a is some number of order unity. The result (5.9) would support the bulk result that

the neutron star becomes unstable at ∆ ∼ N2. It is however not straightforward to estab-

lish (5.9). One first needs to generalize the above computations to correlations functions

involving Ψ’s and their derivatives, and the latter are no longer conformal primaries. In

addition, in these four-point functions not only T but also bilinears in Ψ and its derivatives
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will appear in the intermediate channel, so that additional conformal partial waves need

to be included in the computation. These additional bilinear contributions to the double

OPE are necessary in order to have a crossing-symmetric 4-point function at order 1
c : the

conformal partial wave corresponding to Tµν exchange is not crossing symmetric by itself.

It has to be “dressed up” with contributions from the exchange of fermion bilinears in order

to combine into a crossing-symmetric contribution which basically becomes the graviton

exchange Witten diagram. Finally it would be important to clarify possible complications

from the mixing of the composite operators with other operators of the same quantum

numbers, once interactions are taken into account.

Apart from these complications it seems likely that the single graviton exchange in

the bulk can be reproduced by the T exchange in the double OPE. As we mentioned,

the latter is fixed by conformal invariance and the Ward identities, so it can be reliably

computed even at strong ’t Hooft coupling if we know the conformal dimensions ∆1,∆2

and the central charge c. Thus the gravitational force between two particles in the bulk

can be understood on the boundary via the T exchange, which is a universal property of

CFTs. To compute the full backreaction in our scaling limit we need to sum over all pairs

of particles, but also to include the effects of 3-body, 4-body etc. interactions in the bulk as

we discussed in section 3.2. It is not clear to what extent these higher order forces can be

explained on the boundary by some universal argument, as was the case for 2-body forces.

On the other hand, if we have established that the 2-particle force in the bulk is

reproduced by T exchange, then to compute the total backreaction from 2-particle forces

we simply have to sum over all pairs (i.e. all pairs of single trace constituents of the multi-

trace operator Φ). This summation is an involved combinatoric problem but it has nothing

to do with strong coupling effects in the gauge theory, so in principle it should be tractable.

This part of the backreaction is the “Newtonian” limit of general relativity, in the sense

that we ignore self-interactions of the gravitons. While this is not the full answer, we would

like to emphasize that the existence of a maximum mass and the Chandrasekhar limit can

also be estimated by treating gravity as Newtonian.

5.2 Boundary description of the instability and the collapse

The degenerate star represents a state in the conformal field theory with a large number

of fermionic “glueballs”, placed in a configuration with lowest possible energy. It is a

high-density state at zero temperature. If we keep increasing the density by adding more

glueballs, then at some point the state becomes unstable and presumably undergoes a

phase transition towards a deconfined “quark-gluon plasma” thermal state, the dual of a

black hole in the bulk.

It would be interesting to further explore the physics of this instability and the mean-

ing of the tachyonic mode in the CFT. We expect that when the number of single trace

operators multiplied together becomes very large the resultant operator mixes very strongly

with other operators in the CFT and eventually with the operators dual to the black hole

microstates, which have a very large entropy. Presumably the time scale set by the con-

densation of the tachyonic mode contains information about the thermalization time of the

dual field theory.
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6 Validity and embedding in string theory

Our discussion so far has been general, without reference to a specific AdS/CFT setup.

In this section we would like to discuss a couple of issues related to the validity of our

approximations and the possibility of embedding our story in a precise holographic duality.

There are various possible sources of corrections to our analysis. We will address them

in order of complexity as follows: first we will assume that the theory in the bulk consists

only of a massive fermion and the graviton and check the validity of our approximations.

Then we will include the effect of other massless fields, Kaluza-Klein modes on the sphere

as well as stringy degrees of freedom.

6.1 Toy model with a single fermionic field and the graviton

A possible complication that we have not dealt with so far is that without a fermion

conservation law, the number of fermions does not have to be constant in time as there

may be processes under which fermions convert to gravitons and vice versa. Without a

conservation law it is natural to expect that if we wait long enough then part of the fermions

will be converted to gravitons and the final state will be a finite temperature thermal gas

of gravitons and fermions in equilibrium.

Nevertheless we will now argue that the timescale for this thermalization can be made

parametrically large, in such a way that the degenerate fermionic star is a good description

of the system for quite a long timescale. This is based on the 1
c suppression of the interac-

tions which are responsible for changing the number of fermions and gravitons. Let us now

explain this point in more detail. We want to estimate the decay rate of the fermion gas to

a mixed gas of fermions and gravitons. Notice that provided that the typical wavelength

of the fermions is small (i.e. µ̂(0) is large), which is true in our limit, this question can be

studied locally by looking at a small box in AdS containing the fermionic gas and asking

how quickly it converts to a mixture of fermions and gravitons. In other words it is a

question about the validity of our equation of state, which can be analyzed even in flat

space. So we consider a box of the gas at chemical potential µ and we try to estimate its

“lifetime” τ . The relevant scales in the problem are the fermion mass mf , the chemical

potential µ and the planck mass mp which controls the interactions. For simplicity we will

only check the validity in the regime where µ ≫ mf , in which the particles are extremely

relativistic, and thus interactions are more energetic. If the approximation turns out to

be reliable in this limit then we expect the same to be true for less energetic particles i.e.

when µ ≈ mf .

In this limit we have only two dimensionful parameters µ and mp. We write the lifetime

of the fluid as

τ = f

(
µ

mp

)
1

µ

for some function f(x) of the dimensionless ratio involved in the problem. Our scaling

limit corresponds to µ ∼ c
1

d+1 while in general mp ∼ c
1

d−1 . In other words x → 0. Let us

assume that f has a smooth limit in that regime and expand

f(x) = xa + subleading
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How can we determine the exponent a? This limit can also be understood as one where

we keep mp fixed and send µ to zero. This is a limit of an infinitely dilute gas, where we

can use Feynman diagrams to estimate the lifetime. As a typical example consider the

leading Feynman diagram of two fermions going into two gravitons. From such diagrams

it is easy to determine the dependence of the lifetime on Newton’s constant and we find

that to leading order τ goes like 1
G , which implies a = −d+ 1, or the lifetime

τ ∼ md−1
p

µd
+ subleading, for

µ

mp
→ 0

or

τℓ ∼ c
1

d+1 + subleading, for c→ ∞

Hence the star becomes long-lived (in AdS radius units) at large c. Similar scaling holds

for other possible diagrams,30 if we assume that the correlators scale with c in the way

expected from a theory with a standard large c expansion.31

6.2 Including other modes

The effects of these new fields can be roughly divided in two categories: first they may

lead to a modification of the equation of state for the fermions (or even to a more drastic

breakdown of the approximation of a fermionic fluid in the bulk) and second they may

introduce new long range forces (for example electromagnetic ones if the fermions carry R-

charge). The effect of new long range forces is easier to deal with: one has to solve the TOV

equations coupled to additional massless modes. For example we will discuss in more detail

the inclusion of an electric field in the next section. As we will see the qualitative behavior

of our system remains the same. In general the number of massless modes which can be

sourced by the fermions will be small and we expect that generically the gravitational

coupling will be the dominant one.32 So we do not expect that the inclusion of new long

range forces will modify our results qualitatively.

On the other hand the corrections to the equation of state may be more drastic. To be

concrete, we will first discuss whether these corrections are under control in the usual IIB

AdS5× S5 background dual to N = 4 SYM. In this case we run into a difficulty. The mass of

the fermion ℓ∆0 and the chemical potential µ scale like N2/5ℓ in the limit we consider, which

is parametrically larger than the typical mass of an excited string state 1/ℓs ∼ (gsN)1/4ℓ at

weak string coupling. Therefore, we expect that massive string states will be produced by

the interactions between the fermions. Notice that our scaling arguments of the previous

section do not apply since we can also have diagrams of two fermions producing a single

massive string state, for which the 1
N suppression is not sufficiently large. Moreover the

30Notice that in the regime where µ≫ mf the particles are effectively massless, so from energy momentum

conservation there are no diagrams with 2 incoming and 1 outgoing particles.
31This means that the connected correlator of n “single trace” operators scales like c

2−n

2 , in a normal-

ization where the 2-point functions of single trace operators are of order one.
32One way to explain this expectation is that other long range forces will only couple to the “charges”

of the basic fermion Ψ, while gravity couples to the mass of Ψ as well as the kinetic energy of the fermions

i.e. the “derivatives” acting on Ψ.
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Hagedorn growth in the density of string states (and thus in the density of possible final

states) suggests that the longevity of the star cannot be guaranteed. Instead the star may

quickly convert into a very complicated mess of stringy modes.33

An alternative AdS/CFT realization of our star would be in M-theory backgrounds,

i.e in AdS4× S7 or AdS7× S4. The main advantage of these theories is that all new

physics beyond supergravity is related to the single UV scale m11, the eleven-dimensional

Planck mass. Since we are working in a limit where all energy scales are parametrically

smaller than m11 we can safely ignore all M-theoretic objects beyond those of eleven-

dimensional supergravity. To see this more precisely, let us from the start consider the

full eleven-dimensional picture. In this case the massive fermion corresponds to a certain

Kaluza-Klein mode of the supergraviton multiplet on the sphere. Now let us try some

specific expressions. For simplicity we ignore factors of order 1 in the rest of this section.

In the case of M-theory on AdS4× S7 the AdS radius ℓ is related to the eleven-dimensional

Planck mass m11 by

ℓ =
N1/6

m11
(6.1)

where N is the number of M2 branes, or the units of 4-form flux. In other words the

central charge is c = N3/2. It is not hard to see that in order to have nontrivial gravitational

backreaction then we need an energy density (from the 11 dimensional point of view) which

scales like

ρ = N3/2 1

ℓ11

So the 11d chemical potential of our fluid is of the order

µ = N3/22 1

ℓ

Plugging into the formula for the lifetime for d = 10 we find

τℓ = ℓ
(m11)

9

µ10
+ . . . = N3/22 + . . .

so it increases with N (though very slowly). This shows that if we have no new degrees

of freedom at scales parametrically smaller than m11 then in the large N limit our fluid

becomes stable.

Let us now explain why we do not expect any such degrees of freedom in M-theory on

AdS4× S7. Consider the sequence of compactifications of M theory on AdS4× S7 labeled

by the integer N . In the large N limit the two scales that we are familiar with are the

AdS scale ℓ and the 11d planck mass m11 which are related by (6.1). Let us now assume

that there exists another mass scale, which lies somewhere between 1/ℓ and m11 where new

massive degrees of freedom appear, in analogy with the string scale in IIB. Let us call this

scale mnew. We now consider how this scale behaves, relative to the AdS scale, in the large

N limit. In other words, what is the limit of the product ℓmnew at large N? According to

the AdS/CFT duality for this system we have

ℓmnew → 0

33We would like to thank S. Minwalla for very helpful comments about the validity of our approximations.
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otherwise the statement that in the large N limit we can approximate M-theory on AdS4×
S7 by 11d supergravity would not make sense.

So assuming this condition, we conclude that mnew will necessarily have to be a new

“UV scale” (i.e. a small length scale relative to the size of AdS). So we learn that in the

large N limit we have two UV scales mnew and m11. Notice that as we make N larger

and larger both of these scales move even more towards the UV, and become more and

more tiny as length scales compared to the AdS scale. If in the large N limit we had two

such UV scales in M-theory on AdS it is natural to assume that the same would be true

in flat space, since it is hard to imagine how the finite radius of AdS would introduce a

new UV scale.

On the other hand we know that 11d flat space M-theory has only one scale m11, so

mnew has to be proportional to m11 in the large N limit and not parametrically separated

from it. This is because there cannot be a free parameter to tune the ratio between the

two as there are no moduli in 11d flat space M-theory. So essentially there is only one UV

scale m11 in the large N limit. Then we can apply the arguments of the previous sections

as before.

This argument suggests that our neutron star can probably be reliably embedded in

M-theory on AdS4×S7.

7 Charged stars

In this section we analyze the degenerate star in the case that the fermions are charged

under a U(1) gauge field. One motivation to do so is the following: in most known examples

of AdS/CFT dualities the light fields in the bulk correspond to chiral primaries on the

boundary i.e. they have nontrivial R-charge. Hence the degenerate star will source the

corresponding electromagnetic field, which in turn will induce an additional electromagnetic

force on the fermions. We would like to understand to what extent the inclusion of these

forces will modify our results. Another motivation is the recent analysis of bulk systems at

finite charge density, usually in the presence of a black hole, in the context of “holographic

superconductivity”.34

How can we determine the equilibrium configuration of a large number of charged

fermions which are interacting gravitationally and electromagnetically? We would like

to work directly in the hydrodynamic description and derive the analogue of the TOV

equations for charged matter. First let us understand what is the equation of state that we

have to use. Does the addition of charge modify the equation of state (2.22), (2.23), (2.24)?

An equation of state is defined as the relation between various intensive quantities in the

thermodynamic (infinite volume) limit. However when we have long-range forces sourced

34While this draft was being prepared the work [21] appeared, which has some overlap with the results

of this section. That work focuses on bulk configurations of a charged fermionic fluid in the Poincare patch

with planar sections (in contrast our stars are in global AdS and have spherical symmetry). Presumably

the solutions of [21] can be recovered by taking the planar limit of the solutions constructed here, while

scaling the fermion mass and charge appropriately at the same time. We would like to thank S. Hartnoll

for discussions about their work.
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by the fluid it is impossible to take the infinite volume limit (the system suffers from the

analogue of the Jeans instability).

To see what is the right way to include the effect of the charge let us remember how we

incorporated the gravitational interactions of the fermions: we used the standard equation

of state, but instead of simply solving the hydrodynamic equations ∇µT
µν = 0 on a fixed

background, we solved the Einstein equations using the fluid as a source, which led to the

TOV equations. Similarly in the case of a charged fluid what we have to do is to solve

the Maxwell-Einstein equations, where the fluid sources both the Einstein equations by its

stress energy tensor and the Gauss law for the U(1) gauge field by its charge density.

7.1 Charged TOV equations

Here we derive the TOV equations for charged degenerate stars. We have the

Einstein equations

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν

where the total energy-momentum tensor is now that of a perfect Fermi fluid plus that of

the electromagnetic field

Tµν = (ρ+ p)uµuν + pgµν +
1

4π

(
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

)
(7.1)

Gauss’s law reads

∂µ(
√
gFµν) = 4π

√
gJν (7.2)

Turning on only the radial electric field E(r), we have F01 = −F10 =
√
gttgrrE(r) as

the only non-vanishing components of the electromagnetic field strength. Inserting this

Tµν into the Einstein equations merely has the effect of shifting the energy density and

pressure by the following

ρ→ ρ+
E(r)2

8π
and p→ p− E(r)2

8π

This implies that the form of the first of the equations in (3.9) gets modified to

dM

dr
= Vd−1r

d−1

(
ρ+

E2

8π

)
(7.3)

whereas the other two equations in (3.9) are only implicitly affected through M(r), which

enters the functions A(r) and B(r) in (3.8). Now, conservation of Tµν yields

dp

dr
= −(p+ ρ)

A′(r)

A(r)
+
E(r)

4πr

[
(d− 2)E(r) + rE′(r)

]
(7.4)

The electric field enters the system of equations as a new variable, hence we need another

equation in order to uniquely specify the solution. This comes in the form of Gauss’ law,

written as

E′(r) = −(d− 2)E(r)

r
+ Vd−1 ρchB(r) (7.5)
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where the charge density ρch(r) = qf n(r) for fermion charge qf and the number density

n(r) can be obtained from the thermodynamic identity (2.23). All the primes denote

derivatives with respect to r. Finally substituting eq. (7.5) into eq. (7.4) gives us the

charged analog of the last equation in (3.9).

dp

dr
= −(p+ ρ)

A′(r)

A(r)
+
Vd−2

4π
ρchE(r)B(r) (7.6)

The boundary conditions remain the same as in section 3.4 for the uncharged case.

Also eqs. (3.10) and (3.11) for the radius R and total fermion number NF remain un-

changed in form, except that the functions M(r) and B(r) therein are now replaced by

their charged counterparts. We now proceed to solve this system of coupled differential

equations numerically.

7.2 Numerics of charged solutions

Extending our results of the last section, we now look for numerical solutions of spherically

symmetric and static, but charged TOV equations for degenerate stars in AdS5. As dis-

cussed in section 4.1 we are working with parameters scaled as G5/ℓ
3 → 0 and Mℓ → ∞.

Therefore other physical quantities get the following rescaling

Ê ≡
(

8G5

πℓ3

)1/2

E, q̂f ≡
(

8G5

πℓ3

)−3/10

qf (7.7)

where the hatted quantities are kept fixed as c → ∞. Notice that in this normalization

the charge includes a factor of the U(1) coupling constant which goes like G
1/2
5 . This

means that in the normalization where the charge is integral it scales like c1/5 which is

consistent with the scaling c1/5 of the fermion mass mf for the case where the fermions are

(descendants of) chiral primaries.

7.2.1 A charged degenerate star

In this section we present solutions of typical degenerate stars comprised of charged

fermions. In order to study the effects due to varying charge, we keep both the total

fermion number N̂F as well as the fermion mass m̂f fixed. Then naturally, upon vary-

ing the charge of the star, we expect to see a variation in the total mass as well as the

chemical potential profile. figure 19 shows the radial mass distribution for four stars with

different charges. The mass profiles approach the total mass as r/ℓ → ∞. Notice that

turning on fermion charge gradually increases the mass even though the total number of

fermions is held fixed. This is what we expect from eq. (7.3), where the square of the

electric field enters the mass integral. What happens here is that electrostatic repulsion

acts against gravitational attraction and that reduces the binding energy compared to the

uncharged case.

In figure 20 we plot radial profiles of the local Fermi momentum in the bulk for the

same set of charges as in figure 19. The radius of the star can be read-off from the x-

intercept, where the pressure, energy and number densities all vanish. Compared to the

uncharged star (denoted by the blue curve), we see that increasing fermion charge has the
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Figure 19. Radial mass distributions of charged degenerate stars. Blue profile denotes the un-

charged case; red, black, orange denote profiles with succesively increasing charges.
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Figure 20. Radial functions of Fermi momentum in ascending order of charge, with uncharged

case shown in blue.
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Figure 21. Electric fields inside and outside the stellar mass, scaled by r3. Flat line (blue) denotes

uncharged case, orange curve represents maximally charged case.

effect of increasing the overall size of the star. Also the fermionic momentum at the core of

charged stars is less than that of the uncharged one. Both these effects can be understood

as the electrostatic repulsion acting against the gravitational attraction. Remarkably, as

we see from these plots, this cancellation effect is only small, given that we have determined

solutions for a wide range of fermionic charges.

Figure 21 gives the solution of the electric field of the same stars, scaled by r3. The blue

profile is zero everywhere, as it should. For the other profiles, we note that they exactly

flatten outside the radius of the respective stars. For a spherically symmetric metric in five

dimensions, this means that the electric field outside the star behaves like one resulting
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Figure 22. Gravitational potential of the charged degenerate stars.

from a point charge that falls off as 1/r3. Finally in figure 22 we see the g00 component

of the metric. As expected, the minima of the charged solutions lie slightly above that of

the uncharged.

What we notice from the results presented in this section is that deviations from the

uncharged star upon tuning on fermion charge are relatively only a small fraction and

comparable to the difference between the self-gravitating and unbackreacted star in the

previous section.

7.2.2 Family of charged TOV solutions and critical mass

We now study the characteristics of a family of charged solutions. This will help us identify

stable solutions for static, spherically symmetric charged degenerate stars. Furthermore

this analysis also reveals some interesting features of the solution into the unstable phase

(after the critical point). The results are presented in figure 23. Here we have four profiles

in order of increasing fermion charges; violet being the uncharged case and green being the

maximum charge. The fermion mass m̂f has been held fixed throughout. Each point on

these profiles represents a star with a given central chemical potential µ̂(0). Knowing this,

one can easily compute the energy density at the core of a star ρ̂(0), which is plotted on

the x-axis with a logarithmic scaling.

On the vertical axis of figure 23 we have the mass. Just as in figure 7 in section 4.1.2

once again we clearly observe the existence of a critical mass, seen at the overall maximum

of each profile. This is the Chandrasekhar or Oppenheimer-Volkoff limit for charged stars.

After this limit, the solutions are unstable against radial perturbations for the same reasons

as discussed in section 4.2. Compared to the uncharged case, we see that the critical mass

rapidly increases upon turning on a charge. The figure also shows that the critical chemical

potential µ̂c gradually increases and so does the amplitude of oscillations in the unstable

region like those discussed in section 4.4.2. In conclusion, we observe that many qualitative

features regarding the onset of gravitational collapse discussed in section 4.2 remain valid

also for charged degenerate stars.

These observations also suggest that the holographically dual CFT picture for charged

stars is a relatively straightforward extension of the uncharged case. In addition to the

Tµν exchange between single-trace constituents we also have to include the exchange of the

conserved current Jµ dual to the U(1) gauge field in the bulk.
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Figure 23. Total mass vs central energy density (logarithmically scaled) for a family of stars with

increasing values of fermion charge, from uncharged case (violet) to maximally charged (green).

Finally let us also note that the charge of the star cannot be increased indefinitely,

keeping other parameters fixed. We have checked numerically, that in that event the

solution itself breaks down. This can be understood in the following way. From the

discussion in section 7.2.1 above we have seen that the electrostatic force of the star acts

against its self-gravity. Once this repulsion becomes large enough to overtake self-gravity,

it inhibits the formation of a star. On the other hand, there might be a double scaling limit

which would allow us to construct arbitrarily large charged stars and to take the “Poincare

limit” of global AdS, which would most likely connect to the solutions considered in [21].

It would be interesting to explore this further.

7.2.3 Attractor fixed points

Another feature of the limiting solutions deep into the unstable regime is the existence of

attractor fixed points in the solution space of TOV equations is shown in figure 24, where

the mass has been plotted versus the radius of the star for a family of stars each with a spe-

cific central chemical potential µ̂(0). If we interpret this in a dynamical systems language,

the radial direction plays the role of the time parameter. In the scaling limit µ̂(0) → ∞,

the solutions remarkably spiral towards the attractor fixed points of the TOV equations.

In figure 24, the different profiles denote solutions with different fermion charges, with

the violet curve being the uncharged case and the green profile being maximally charged.

These spirals are precisely the mass (and similarly radius) oscillations that we discuss in

section 4.4.2 below. Here we see note that these spiraling attractors/mass oscillations are

a generic feature of the TOV system of equations, both with and without U(1) charges.

Figure 25 shows a blow-up near one of the fixed points. In these plots the fermion mass

m̂f was held fixed. Upon reversing the set-up to vary m̂f and keep the fermion charge

– 54 –



J
H
E
P
0
1
(
2
0
1
1
)
1
4
4

2.5 3.0 3.5 4.0 4.5
0

5

10

15

20

R/ℓ

M̂

Figure 24. Mass vs radius of a family of stars for increasing fermion charges from blue curve
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Figure 25. Zooming-in the mass vs stellar radius profile near the fixed point. The blue curve

denotes a family of uncharged stars.

fixed, we have also observed similar spiraling attractors. In this sense, the fermion mass

and charge fully specify the parameter space of all fixed points.

8 Thermal graviton star

In this section we will study the thermal version of a star in an AdSd+1×Sk background.

We will consider a thermal gas of all35 supergravity modes at sufficiently high temperature

so that they backreact to the geometry. Our solution will be the analogue of the radiation

star [32], including certain modifications due to the internal sphere Sk.

The main motivation for considering the thermal star is the following: if we start with

a generic, sufficiently complicated, initial state in AdS we expect that at late times36 the

system will be approximately described by a thermal density matrix of an ensemble with

the same values of conserved charges (such as energy or R-charge) as the initial state. This

final thermal state may be a black hole in AdS, or a thermal gas of all supergravity fields

depending on the initial state. We want to study the thermal gas endpoint in the case

where the temperature is high enough for the gas to backreact.

35In this section when we refer to a “graviton star” we refer to a system where all massless supergravity

fields have been turned on thermally.
36Depending on the choice of initial state the thermalization may be slow in units of the AdS scale, in

the large N limit, as we argued in the previous section. However if we wait long enough the system will

eventually thermalize.
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Moreover, the thermal star may describe a “superheated” phase of certain gauge the-

ories as we now explain. Large N gauge theories with classical gravity duals undergo

deconfinement phase transitions [41], which are the analogue of the Hawking-Page phase

transition between a gas of gravitons at low temperature and a black hole at high temper-

ature. This phase transition takes place at a temperature THP which is of order one (i.e

does not scale with N). The low temperature phase has energy of order N0 while the high

temperature has energy of order N2. The jump of energy between the two phases indicates

that the phase transition is of first order. What would happen if we considered the same

system in the microcanonical ensemble? Notice that the thermal gas phase, while thermo-

dynamically subdominant, is locally stable even at T > THP . This means that if we work

in the microcanonical ensemble we can push the thermal graviton gas into a superheated

phase by pumping in energy so that the effective temperature T of the gas will go above

the Hawking-Page temperature THP .37

Let us consider what happens to this superheated phase as we increase the temperature

T . From general intuition we expect that the temperature cannot be increased indefinitely

since the graviton gas will undergo gravitational collapse, if sufficiently heavy. The energy

of a thermal gas in AdSd+1 grows like T d+1 so it will backreact to the geometry when

GT d+1ℓ2 ∼ 1 where G is Newton’s constant. In terms of the central charge we find that

gravitational backreaction of the thermal gas will start to take place when T ∼ c1/(d+1)ℓ−1

in the large c limit.38 So in theories where there is no other scale up to the Planck mass (for

example in theories without a “string scale”39) we expect that the superheated thermal gas

phase will indeed persist up to temperatures of the order where gravitational backreaction

will become important. We want to compute the effect of the backreaction and understand

thermodynamic properties of the superheated phase, for example its equation of state E(T ).

To compute the backreaction of a thermal gas we have to solve the Einstein equations

coupled to the stress tensor of a fluid at temperature T . For massless fields in the bulk the

relevant equation of state is that of radiation. If the massless fields have spin we simply

have to multiply the energy and pressure by the appropriate number of polarizations. This

means that a thermal graviton star in AdSd+1 is the same as the radiation star of [32],

apart from a difference in a numerical coefficient in the equation of state, relating the

energy density to the temperature, due to the number of graviton polarizations. Then we

do indeed see that there is a maximum temperature beyond which the superheated phase

ceases to exist.

In this section we would like to repeat the computation of [32] in backgrounds of the

form AdSd+1×Sk i.e with an internal sphere, since they are more relevant for AdS/CFT.

For this purpose we start directly with the d+ k + 1 dimensional supergravity equations,

sourced by a d + k + 1 dimensional radiation fluid. After describing the structure of the

37Of course this would not make sense in the canonical ensemble.
38Notice that this is parametrically smaller than the Planck scale in the bulk which grows like mP ∼

c
1

d−1 ℓ−1.
39As we discussed in the previous section, this phase is not relevant for the N = 4 SYM, since the

required temperature is much hotter than the Hagedorn temperature but it might be realizable in M-theory

backgrounds.
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resulting equations we give a concrete example by solving these equations numerically for

the specific case of M-theory on AdS4×S7.

Another motivation to consider a backreacted thermal gas on AdSd+1×Sk background,

thus generalizing the work of [32], is in order to clarify the effect of the KK modes on the

Sk sphere. In the previous sections of the paper we were working in the d+ 1 dimensional

reduced theory on AdSd+1, so a natural question was how much do the other KK modes

on the sphere modify our results. To answer this question qualitatively it is perhaps easier

to go directly to the full d + k + 1-dimensional theory where there is no issue about the

KK reduction. As we will see the qualitative features of the solutions are similar to the

ones we have been discussing.

8.1 The equations of motion

We start by considering a general AdSd+1×Sk compactification. We take the action in

d+ k + 1 dimensions to be

S =
1

16πG̃

∫
dx
√
g̃

(
R̃− 1

2
F 2

)

where for the (d + 1)-form we have defined F 2 = 1
(d+1)!Fµ1...µd+1

Fµ1...µd+1 . The possible

presence of Chern-Simons terms will not be relevant for our static spherically symmetric

solutions. The equations of motion are

R̃µν −
1

2
g̃µνR̃ =

1

2 d!
Fµµ2...µd+1

F
µ2...µd+1
ν − 1

4
F 2g̃µν (8.1)

To fix the asymptotic form of the metric we first look for an AdSd+1×Sk solution, without

the radiation fluid, of the form

ds2 = ℓ2ds2AdSd+1
+R2dΩ2

k

where ds2AdSd+1
and dΩ2

k are the metrics of the unit radius AdSd+1 and Sk respectively.

We take the form F to be proportional to the volume form of AdSd+1. We introduce the

effective d+ 1 dimensional cosmological constant Λ as

F 2

4
=

(d+ k − 1)

(d− 1)(k − 1)
Λ (8.2)

and then from the equations of motion we find that

ℓ2 = −d(d− 1)

2Λ
, R2 = −(d− 1)(k − 1)2

2dΛ
(8.3)

In the presence of the radiation fluid the d+k+1 dimensional equations of motion (8.1)

are modified as

R̃µν −
1

2
g̃µνR̃ =

1

2 d!
Fµµ2...µd+1

F
µ2...µd+1
ν − 1

4
F 2g̃µν + 8πG̃T fluidµν

where the stress energy tensor of the fluid in d+ k + 1 dimensions is

T fluidµν = (ρ̃+ p̃)ũµũν + p̃g̃µν
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with the equation of state for radiation

p̃ =
1

d+ k
ρ̃

The energy density is related to the temperature in d+ k + 1 dimensions by ρ = σT d+k+1

where the constant σ is proportional to total number of bosonic degrees of freedom of the

theory. The velocity satisfies ũµũ
µ = −1 with respect to the metric g̃µν .

We now focus on static configurations which also respect the SO(k + 1) symmetry of

the Sk. The size of Sk will not be constant in the radial direction, therefore we consider

the following ansatz for the metric in d+ k + 1 dimensions

ds2 = e−
2k

d−1
φ(xµ)gµν(x

µ) +R2e2φ(xµ)dΩ2
k

where gµν is the d+1 dimensional metric and the form F is still proportional to the volume

form of the d + 1 dimensional space. To proceed we will write the equations in terms of

the d+ 1 dimensional metric g and the scalar φ. The d+ 1 dimensional Newton’s constant

G is defined by the relation

1

16πG
=
RkVk

16πG̃

where Vk is the volume of the unit Sk. The velocity ũµ is normalized to square to −1 with

respect to the metric g̃µν , so we introduce

uµ = e
k

d−1
φũµ

which satisfies gµνuµuν = −1. We also define effective d + 1 dimensional pressure

and density

p = (RkVk)
−1e−

2k
d−1

φp̃, ρ = (RkVk)
−1e−

2k
d−1

φρ̃

After some algebra we find that (8.1) can be written as d + 1 dimensional equations in

the form

Rµν −
1

2
gµνR+ Λgµν =

k(d+ k − 1)

(d− 1)

(
∂µφ∂νφ− 1

2
gµν(∂φ)2 − V (φ)gµν

)

+8πG [(ρ+ p)uµuν + pgµν ]

�φ = V ′(φ) − 8πGp

with

V (φ) = −Λ
d

k − 1

(
e−2 kd

d−1
φ

kd
− e−2k+d−1

d−1
φ

d+ k − 1

)
− Λ

d− 1

k(d + k − 1)

and

p =
1

d+ k
ρ
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8.2 The graviton star solution

Now we consider a spherically symmetric ansatz for the d+ 1 dimensional metric

ds2 = −e2χ(r)−2β(r)dt2 + e2β(r)dr2 + r2dΩ2
d−1

with ut = eχ(r)−β(r) and φ(r), p(r), ρ(r) functions of r only. The scalar equation becomes

∂2
rφ+

(
χ′ − 2β′ +

d− 1

r

)
∂rφ = e2βV ′(φ) − e2β8πGp

The tt equation gives

d−1

2r2

(
(d−2)(e2β−1)+2rβ′

)
e−2β+

d(d−1)

2ℓ2
=
k(d+k−1)

(d−1)

(
1

2
(∂rφ)2e−2β+V (φ)

)
+8πGρ

Defining

e−2β = 1 +
r2

ℓ2
− Cd+1

M(r)

rd−2

with Cd+1 = 16πG
(d−1)Vd−1

we find

M ′ = Vd−1r
d−1

[
ρ+

1

8πG

k(k + d− 1)

(d− 1)

(
1

2
(∂rφ)2e−2β + V (φ)

)]

Adding the tt and rr equations we find

χ′ =
r

d− 1

(
k(d+ k − 1)

(d− 1)

1

2
(∂rφ)2 + 8πG(ρ + p)e2β

)

Finally from the conservation equation of the total Tµν one can show that the effective

d+ 1 dimensional density and pressure are

ρ(r) =
ρ̃0

RkVk
e−

k(d+k+1)
d−1

φ0+(d+k+1)χ0 e
k(d+k−1)

d−1
φ(r)−(d+k+1)(χ(r)−β(r)), p(r) =

1

d+ k
ρ(r)

(8.4)

where ρ̃0 is the d+ k + 1 dimensional density at the center.

These equations can be used to find solutions numerically. We have to specify the

d + k + 1 dimensional density ρ̃0 at the center and the value φ0 of the scalar field and

then integrate outwards. The value χ0 ≡ χ(0) at the center can be determined as follows:

we notice that the differential equations are invariant under a constant shift of χ which

corresponds to an overall rescaling of the time coordinate. By demanding that at infinity

the metric is written in the standard parametrization of AdS space we have to impose

χ(∞) = 0. Using the invariance under constant shifts of χ this can always be achieved by

an appropriate choice of χ0. So χ0 is not really an independent parameter that we can

tune. At this stage it seems that the independent initial data are given by the two numbers

(ρ̃0, φ0). However we also have another boundary condition that we have to satisfy. At

large r the scalar field has to go to the minimum of the potential φ = 0, otherwise we

would not have an asymptotically AdS space. This shows that the pairs of initial data

(ρ̃0, φ0) are actually not independent. For every ρ̃0 there is a value φ0 such that after
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Figure 26. Mass of a thermal star in AdS4×S7 as a function of the 11-dimensional energy density

ρ̃0 at the center.

evolving these initial data we get an asymptotically AdS space. Solving this “shooting

problem” numerically we can determine a one-parameter family of graviton-star solutions

parametrized by the density at the center ρ̃0.

In figure 26 we show the mass of the star as a function of ρ̃0. We notice that the

qualitative features are similar to those of a radiation star [32] in AdS4. There is a crit-

ical central density ρ̃c beyond which the mass of the star starts to decrease signaling a

Chandrasekhar-type instability. Solutions with ρ̃0 > ρ̃c are unstable under radial per-

turbations and presumably collapse. The natural endpoint of this collapse is an eleven

dimensional Schwarzschild black hole in thermal equilibrium with its Hawking radiation.40

It would be interesting to study these thermal stars in more detail and their possible

relevance for finite temperature gauge theories.

9 Discussions

In this paper we studied the holographic interpretation of degenerate fermionic stars in

anti de Sitter space. Clearly our work leaves many important questions unanswered and is

only a first step in a potentially interesting direction. Let us now mention some possible

further directions.

It may be interesting to study the dynamical process of collapse towards a black hole

by computing numerically the time-dependent solution in the case that the mass of the star

exceeds the Chandrasekhar bound. In principle this bulk computation is straightforward,

though perhaps tedious, and it might be useful for answering certain questions about the

dual deconfinement transition in the boundary CFT. Along these lines it might also be

interesting to explore possible connections with critical scaling during the collapse. The

Choptuik scaling has been discussed in the context of AdS/CFT in recent works [42–45].

The analogue of Choptuik scaling has been observed in the (driven) collapse of neutron

stars [46, 47],41 so it would presumably be relevant for the collapse of our star and might

have an interesting interpretation in the dual gauge theory.

40We are always working in the microcanonical ensemble so the total energy is conserved.
41We would like to thank L. Alvarez-Gaume for bringing this to our attention and for useful comments.
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Another interesting direction would be the computation of boundary correlation func-

tions in the presence of the star. It would be useful to understand how the bulk Fermi

surface is visible in terms of the boundary correlators and compare with works [17–20] where

the fermionic correlators are evaluated in the background of a black hole (see also [48] for

related issues). Let us notice that our star (at least the one without charge) can only exist

in global AdS coordinates and not in the Poincare patch. In terms of the boundary theory

the star would describe a low-temperature sector of the theory, at temperatures below the

Hawking-Page transition and the black hole formation. So in a sense it would be the ana-

logue of the low-temperature phase of the systems studied in the aforementioned works, at

low temperature/chemical potential.

It would be useful to further clarify issues related to the validity of our approximations.

While we tried to address some of these issues, a more carefully analysis would be desirable.

In particular it it would be interesting to settle conclusively whether a degenerate fermionic

star can be reliably realized in a known AdS/CFT duality.

Finally, it is clear that the boundary CFT treatment in our paper was on a rather basic

level. We hope that more can be done in the direction of analyzing the interacting gas of

fermions directly on the CFT side, perhaps under suitable simplifying assumptions about

the spectrum of the theory and the strength of interactions, extending the basic estimates

that we sketched in this paper. Furthermore it would be interesting to understand how to

translate the dynamical evolution of the collapsing star (after the relevant solution has been

calculated in the bulk) into useful information about the thermalization and deconfinement

of the gas of glueballs in the gauge theory side. We leave these questions for future work.
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