Interceram - International Ceramic Review

, Volume 66, Issue 6, pp 244–252 | Cite as

Selenium-Substituted Hydroxyapatite Nanoparticles and their in Vitro Interaction on Human Bone Marrow- and Umbilical Cord-Derived Mesenchymal Stem Cells

  • S. I. Korowash
  • A. Burdzinska
  • P. Pędzisz
  • F. Dąbrowski
  • A. A.-M. Mostafa
  • A. Abdel-Razik
  • A. Mahgoub
  • D. M. Ibrahim
High-Performance Ceramics


Hydroxyapatite (HA) is biocompatible with high binding activity to DNA and protein. Selenium (Se) plays a specific role in human health. Incorporation of selenium into biocompatible hydroxyapatite (HA) may endow the material with novel characteristics. in this work, a series of nano-hydroxyapatite [SeHA] powders with 1 to 5 mass-% substituted selenium were synthesised by an aqueous precipitation method using sodium selenite. The precipitates were dried at 60°C and their dried ground powders were characterised by XRD, FTIR end TEM. Substitution of Se ions took place in the crystal lattice of HA. The presence of Na ions in the hydroxyapatite was detected by XRF in all samples with selenium substituted in the lattice. No change was detected in the morphology of the rod-shaped particles, but a reduction in their size was observed as the selenium content increased. The cytotoxicity of the powders on human bone marrow mesynchymal stem cells (BM-MSCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) was evaluated in vitro. The amount of 0.59 mM Se, corresponding to 2 mass-% substitution in the HA lsttice, did not show cytotoxicity and stimulated proliferation of UC-MSCs in contrast to pure HA powders which inhibited growth of cells. Toxicity started to appear in samples when substitution exceeded 2 mass-%. The highest concentration (5 mass-%) was severely cytotoxic. The results suggest that selenium substitution might be an attractive cell delivery modification of hydroxyapatite nanoparticles for future use in tissue engineering.


selenium hydroxyapatite mesenchymal stem cells nanoparticles bone marrow umbilical cord 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mostafa, A.A., Rezk, K., Dahy, T., El-Basyouni, G.: Characterization and in-vitro assessment of nano-hydroxyapatite prepared by polymeric route. Proc. 2nd Inter. Conf. and Exh. on Multifunctional Nanocomposites and Nanomaterials. Sharm El Sheikh, Egypt, January 11–13 (2008) 1–10Google Scholar
  2. [2]
    Rezk, K., Mostafa, A.A.: Preparation and bioactivity evaluation of hydroxyapatite titania/chitosan-gelatin polymeric biocomposites. Mater. Sci. and Eng. C28 (2008) 220–225Google Scholar
  3. [3]
    Yingchao Han, Shipu Li, Xianying Cao et al.: Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Scientific reports 4 (2014) Article number 7134Google Scholar
  4. [4]
    Adams, B., Mostafa, A.A., Schwartz, Z., Boyan, B.D.: Osteoblast response to nanocrystalline calcium hydroxyapatite depends on carbonate content. J. Biomed. Mater. Res. Part A 102 (2014) [9] 3237–3242CrossRefGoogle Scholar
  5. [5]
    Mostafa, A.A., Ibrahim, D.M., Korowash, S.I., Fahim, F., Oudadesse, H.: Nanohybrid-composite scaffolds from substituted apatite/gelatin. Key Engi. Mater. 587 (2014) 233–238CrossRefGoogle Scholar
  6. [6]
    Mostafa, A.A., Oudadesse, H., Mohamed, M.B. et al.: Convenient approach of nanohydroxyapatite polymeric matrix composites. Chem. Eng. J. 153 (2009) 187–192CrossRefGoogle Scholar
  7. [7]
    Smith, D.K.: Calcium phosphate apatites in nature. In: Hydroxyapatite and related Materials. Edited by: Brown, P.W., Constantz, B., CRC Press, Boca Raton, USA (1994) 29–45Google Scholar
  8. [8]
    Carlisle, E.M.: Silicon: A possible factor in bone calcification. Science 167 (1969) 279–280CrossRefGoogle Scholar
  9. [9]
    Ruys, A.J.: Silicon-doped hydroxyapatite. J. Aust. Ceram. Soc. 29 (1993) 71–80Google Scholar
  10. [10]
    Ghadimi, E., Eimar, H., Marelli, B., Nazhat, S.N., Asgharian, M., Vali, H., Tamimi, F.: Trace elements can influence the physical properties of tooth enamel. SpringerPlus 2 (2013) 499CrossRefGoogle Scholar
  11. [11]
    Marie, P.J.: Strontium ranelate: New insights into its dual mode of action. Bone 40 (2007) S5–S8CrossRefGoogle Scholar
  12. [12]
    Bowen, H.J.M.: Trace elements in biochemistry, Academic Press, San Diego (1996)Google Scholar
  13. [13]
    Monteil-Rivera, F., Fedoroff M., Jeanjean J., Minel L., Barthes G., Dumonceau J.: Sorption of selenite (SeO3 2−) on hydroxyapatite: An exchange process, J. Colloid Interface Sci. 221 (2000) 291–300CrossRefGoogle Scholar
  14. [14]
    Steinbrenner, H., Speckmann, B., Klotz, L.O.: Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys. 595 (2016) 113–119CrossRefGoogle Scholar
  15. [15]
    Wrobel, J.K., Power, R., Toborek, M.: Biological activity of selenium: Revisited. IUBMB Life 68 (2016) [2] 97–105CrossRefGoogle Scholar
  16. [16]
    Czuczejko, J., Zachara, B.A., Staubach-Topczewska, E., Halota, W., Kedziora, J.: Selenium, glutathione and glutathione peroxidases in blood of patients with chronic liver diseases. Acta Biochim. Pol. 50 (2003) [4] 1147–1154Google Scholar
  17. [17]
    Ebert R. et al.: Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24 (2006) 1226–1235CrossRefGoogle Scholar
  18. [18]
    Burke, J., Hunter, M., Kolhe, R., Isales, C., Hamrick, M., Fulzele, S.: Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clin. Transl. Med. 5 (2016) [1] 27CrossRefGoogle Scholar
  19. [19]
    Haldar, D., Henderson, N.C., Hirschfield, G., Newsome, P.N.: Mesenchymal stromal cells and liver fibrosis: A complicated relationship. FASEB J. 30 (2016) [12] 3905–3928CrossRefGoogle Scholar
  20. [20]
    Zeng, W. et al.: Antioxidant treatment enhances human mesenchymal stem cell anti-stress ability and therapeutic efficacy in an acute liver failure model. Sci. Rep. 5 (2015) 11100, doi:  10.1038/srep11100 CrossRefGoogle Scholar
  21. [21]
    Bajek, A., Gurtowska, N., Olkowska, J., Kazmierski, L., Maj, M., Drewa, T.: Adipose-derived stem cells as a tool in cell-based therapies. Arch. Immunol. Ther. Exp. Warsz 64 (2016) [6] 443–454CrossRefGoogle Scholar
  22. [22]
    Mrozik, K., Gronthos, S., Shi, S., Bartold, P.M.: A method to isolate, purify, and characterize human periodontal ligament stem cells. Methods Mol. Biol. 1537 (2017) 413–427CrossRefGoogle Scholar
  23. [23]
    Mennan, C., Brown, S., McCarthy, H., Mavrogonatou, E., Kletsas, D., Garcia, J., Balain, B., Richardson, J., Roberts, S.: Mesenchymal stromal cells derived from whole human umbilical cord exhibit similar properties to those derived from Wharton’s jelly and bone marrow. FEBS Open Bio. 6 (2016) [11] 1054–1066CrossRefGoogle Scholar
  24. [24]
    Dabrowski, F.A., Burdzinska, A., Kulesza, A., Chlebus, M., Kaleta, B., Borysowski, J., Zolocinska, A., Paczek, L., Wielgos, M.: Mesenchymal stem cells from human amniotic membrane and umbilical cord can diminish immunological response in an in vitro allograft model. Gynecol Obstet Invest. 82 (2017) [3] 267–275CrossRefGoogle Scholar
  25. [25]
    Jarcho, M., Bolen, C.H., Thomas, M.B., Bobick, J., Kay, J.F., Doremus, R.H.: Synthesis and characterization in dense polycrystalline form. J. Mater. Sci. 11 (1976) 2027–2035CrossRefGoogle Scholar
  26. [26]
    Ibrahim, D.M., Mostafa, A.A., Korowash, S.I.: Chemical characterization of some substituted hydroxyapatites. Chem. Centr. J. 5 (2011) 74CrossRefGoogle Scholar
  27. [27]
    Bouyer, E., Gitzhofer, F., Boulos, I.: Morphological study of hydroxyapatite nanocrystal suspension. J. Mater. Sci. Mater. Med. 11 (2000) 523–531CrossRefGoogle Scholar
  28. [28]
    Lafon, J.P., Champion, E., Bernache-Assollant, D.: Processing of AB-type carbonated hydroxyapatite Ca10−x(PO4)6−x(CO3)x(OH)2−x−2y(CO3)y ceramics with controlled composition. J. Europ. Ceram. Soc. 28 (2008) [1] 139–147CrossRefGoogle Scholar
  29. [29]
    Suchanek, W.L., Shuk, P., Byrappa, K., Rimana, R.E., TenHuisen, K.S., Janas, V.F.: Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 23 (2002) [3] 699–710CrossRefGoogle Scholar
  30. [30]
    Tadic, D., Peters, F., Epple, M.: Continuous synthesis of amorphous carbonated apatites. Biomaterials 23 (2002) 2553–2559CrossRefGoogle Scholar
  31. [31]
    Kolmas, J., Oledzka, E., Sobczak, M., Nałęcz-Jawecki, G.: Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications. Mater. Sci. and Eng. C39 (2014) 134–142CrossRefGoogle Scholar
  32. [32]
    Ross, S.D.: Inorganic Infrared and Raman Spectra. McGraw-Hill, London (1972), ISBN: 0070941793 9780070941793Google Scholar
  33. [33]
    Nakamoto, K.: Infrared and Raman spectra of inorganic and coordination compounds, 4th ed. John Wiley & Sons, New York (1986), ISBN 10: 0471010669 / ISBN 13: 978-0471010661Google Scholar
  34. [34]
    Su, C.H., Suarez, D.L.: Selenate and selenite sorption on iron oxides: An infrared and electrophoretic study. Soil Sci. Soc. Amer. J. 64 (2000) 101–111CrossRefGoogle Scholar
  35. [35]
    Remya, N.S., Syama, S., Gayathri, V., Varma, H.K., Mohanan, P.V.: An in vitro study on the interaction of hydroxyapatite nanoparticlesand bone marrow mesenchymal stem cells for assessing the toxicological behavior. Colloids and Surfaces B: Biointerfaces 117 (2014) 389–397CrossRefGoogle Scholar
  36. [36]
    Abdulah, R., Miyazaki, K., Nakazawa, M., Koyama, H.: Chemical forms of selenium for cancer prevention. J. Trace Elem. Med. Biol. 19 (2005) 141–150CrossRefGoogle Scholar
  37. [37]
    Yuan, Y., Liu, C., Qian, J., Wang, J., Zhang, Y.: Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials 31 (2010) 730–740CrossRefGoogle Scholar
  38. [38]
    Lu, F., Wu, S.H., Hung, Y., Mou, C.Y.: Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5 (2009) 1408–1413CrossRefGoogle Scholar
  39. [39]
    Zhao, X., Ng, S., Heng, B.C., Guo, J., Ma, L., Tan, T.T.Y., Ng, K.W., Loo, S.C.J.: Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch. Toxicol. 87 (2013) 1037–1052CrossRefGoogle Scholar
  40. [40]
    Ma, J., Wang, Y., Zhou, L., Zhang, S.: Preparation and characterization of selenite substituted hydroxyapatite. Mater. Sci. and Eng. C 33 (2013) 440–445CrossRefGoogle Scholar
  41. [41]
    Wang, Y., Ma, J., Zhou, L., Chen, J., Liu, Y., Qiu, Z., Zhang, S.: Dual functional selenium-substituted hydroxyapatite. Interface Focus 2 (2012) 378–386CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • S. I. Korowash
    • 1
  • A. Burdzinska
    • 2
  • P. Pędzisz
    • 3
  • F. Dąbrowski
    • 4
  • A. A.-M. Mostafa
    • 1
  • A. Abdel-Razik
    • 5
  • A. Mahgoub
    • 5
  • D. M. Ibrahim
    • 1
  1. 1.Ceramics DepartmentNational Research CentreCairoEgypt
  2. 2.Department of Immunology, Transplantology and Internal DiseasesMedical University of WarsawWarsawPoland
  3. 3.Department of Orthopaedy and Traumatology of the Motor SystemMedical University of WarsawWarsawPoland
  4. 4.1st Department of Obstetrics and GynecologyMedical University of WarsawWarsawPoland
  5. 5.Chemistry Department, Faculty of ScienceCairo UniversityCairoEgypt

Personalised recommendations