Advertisement

The Botanical Review

, Volume 57, Issue 1, pp 1–32 | Cite as

Plant litter: Its dynamics and effects on plant community structure

  • José M. Facelli
  • Steward T. A. Pickett
Article

Abstract

We discuss the dynamics of plant litter, the effects of litter on the chemical and physical environment, the direct and indirect effects of plant litter on plant populations and communities, and different adaptative traits that may be related to litter accumulation. The production of litter depends primarily on the site productivity, but other properties of the environment, as well as chance, may introduce important variation. The existence of time lags between the production of plant organs and their transformation into litter appears as a relevant character of litter dynamics seldom included in models. Herbivory, and other processes that destroy biomass or reduce productivity, may reduce the amount of litter produced. The destruction of litter encompasses a complex of interactions. The main processes, including physical and chemical degradation, consumption by invertebrates and decomposition, are differentially affected by the environment and by the physical and chemical characteristics of the litter itself. The relative importance of those processes varies among systems.

Litter alters the physical and chemical environment directly and indirectly. The decomposition of litter may release both nutrients and phytotoxic substances into the soil. The physical changes produced by litter also alter the activity of decomposers, resulting in an indirect effect on the chemical environment. The accumulated litter intercepts light, shading seeds and seedlings, and reduces the thermal amplitude in the soil. By reducing maximum soil temperatures, and creating a barrier to water vapor diffusion, litter reduces evaporation from the soil. However, litter may also diminish water availability when it retains a large proportion of rainfall. Litter creates a physical barrier for seedling and sprout emergence and to seeds reaching the soil.

The heterogeneity introduced into the abiotic environment by the patchy accumulation of litter may affect community structure. This effect may be both direct (when the litter of one species affects the performance of a second species) or indirect (when litter produced by one species alters the outcome of the interaction between a second and a third species).

Litter tolerance, timing of litterfall to optimize external nutrient recycling, and accumulation of litter to deter competitors (either through physical or chemical effects) have been postulated as strategies associated with litter accumulation. The existing evidence shows that only tolerance to litter accumulation admits adaptative value as the most likely explanation.

Keywords

Soil Temperature Leaf Litter Botanical Review Gross Primary Production Plant Litter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resumen

En ésta revisión bibliográfica analizamos la dinámica de la broza, sus efectos sobre el ambiente fisico y quimíco, y los efectos directos e indirectos de la acumulación de broza sobre la estructura y dinámica de las poblaciones y comunidades vegetales. Finalmente, analizamos distintas adaptaciones de las poblaciones vegetales relacionadas con la acumulación de broza.

La cantidad de broza acumulada en un sitio depende primariamente de su productividad, pero varios otros factores ambientales, así como el azar, pueden introducir importantes variaciones. El lapso entre la formatión de un órgano y su muerte y caída, puede ser un factor de gran importancia en la dinámica de la broza. El consumo heterotrófico, así como otros factores fisicos que destruyen biomasa o reducen la productividad, también puede afectar su acumulación. La destructión de la broza constituye un proceso cuasi-sucesional. Los principales subprocesos involucrados—fragmentatión fisica, consumo por invertebrados y descomposición—son controlados por factores ambientales y por las propiedades de la broza misma.

La acumulación de broza puede afectar profundamente el ambiente físico y químico. Los cambios fisicos que induce pueden alterar la actividad de los descomponedores, mientras que su descomposición libera nutrientes y compuestos fitotóxicos en el suelo. La broza intercepta luz, sombreando semillas y plántulas, y reduciendo la amplitud térmica del suelo. Al reducir la temperature del suelo, y al crear una barrera a la difusión del vapor de agua, la broza reduce la evaporación desde el suelo. Sin embargo, puede también disminuir la disponibilidad de agua, si retiene una proporción considerable de la lluvia. Además, la broza constituye un barrera fisica que puede impedir la llegada al suelo de algunas semillas, así como dificultar la emergencia de plántulas y brotes.

Los patrones de acumulación de broza introducen heterogeneidad temporal y espacial, que puede afectar la estructura y dinámica de la comunidad. Sus efectos pueden ser directos (cuando la presencia de broza afecta el éxito de una población) o indirectos (cuando el efecto de la broza sobre una población altera el resultado de la interacción con una segunda). Adicionalmente, la broza puede afectar las comunidades de invertebrados, lo que puede a su vez repercutir en la comunidad vegetal.

Varios autores han propuesto que la tolerancia a la presencia de broza, la regulación del ciclo de nutrientes mediante distintas estrategias foliares, y la producción de broza como un medio de combatir competidores mediante sus efectos fisicos o químicos, son componentes de estrategias adaptativas de distintas poblaciones. La evidencia disponible sugiere que sólo la tolerancia a la broza acepta valor adaptativo como explicación más verosímil.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abdul-Wahab, A. &E. Rice. 1967. Plant inhibition by Johnson grass and its possible significance in old field succession. Bull Torrey Bot. Club94: 486–497.Google Scholar
  2. Al-Mufti, M. M., C. L. Sydes, S. B. Furness &S. R. Band. 1977. A quantitative analysis of shoot phenology & dominance in herbaceous vegetation. J. Ecol.65: 759–791.Google Scholar
  3. Anderson, J. M. 1975. Succession, diversity and trophic relationships in some soil animals in decomposing leaf litter. J. Animal Ecol.44: 475–495.Google Scholar
  4. Andren, O. &K. Paustian. 1987. Barley straw decomposition in the field: A comparison of models. Ecology68: 1190–1200.Google Scholar
  5. Andrzejewska, L. &G. Gyllenberg. 1980. Small herbivore subsystem. Pages 201–267in A. I. Breymeyer & G. M. van Dyne (eds.), Grasslands, system analysis, and man. IBP 19. Cambridge University Press, New York.Google Scholar
  6. Bakker, J. P. 1985. The impact of grazing on plant communities, plant populations and soil conditions in salt marshes. Vegetatio62: 391–398.Google Scholar
  7. Ballaré, C. L., R. A. Sánchez, A. L. Scopel &C. M. Ghersa 1988. Morphological responses ofDatura ferox L. seedlings to the presence of neighbors. The relationship with canopy microclimate. Oecologia76: 288–293.Google Scholar
  8. Barrett, L. I. 1931. Influence of forest litter on the germination and early survival of chestnut oak,Quercus montana Willd. Ecology12: 476–484.Google Scholar
  9. Beatty, S. W. &O. D. V. Sholes. 1988. Leaf litter effect on plant species composition of deciduous forest treefall pits. Canad. J. Forest Res.18: 553–559.Google Scholar
  10. Berendse, F., B. Berg &E. Bosatta. 1987. The effect of lignin and nitrogen on the decomposition of litter in nutrient poor ecosystems: A theoretical approach. Canad. J. Bot.65: 1116–1121.Google Scholar
  11. Bergelson, J. 1990. Life after death: site preemption by the remains. ofPoa annua. Ecology71:2157–2165.Google Scholar
  12. Boerner, R. E. J. 1983. Nutrient dynamics of vegetation and detritus following two intensities of fire in the New Jersey Pine Barrens. Oecologia59: 129–134.Google Scholar
  13. Bokhari, V. G. 1978. Allelopathy among prairie plants and its possible ecological significance. Ann. Bot.42: 127–136.Google Scholar
  14. Borchet, M. I., F. W. Davies &J. Michaelsen. 1989. Interactions of factors affecting seedling recruitment of blue oak (Quercus douglasii) in California. Ecology70: 389–404.Google Scholar
  15. Bray, J. R. &E. Gorham. 1964. Litter production in forests of the world. Adv. Ecol. Res. 2: 101–187.Google Scholar
  16. Bruederle, L. P. &F. W. Stearns. 1985. Ice storms damage to a southern Wisconsin mesic forest. Bull. Torrey Bot. Club112: 167–175.Google Scholar
  17. Carson, W. P. &C. J. Peterson. 1990. The role of litter in an old-field community: Impact of litter quantity in different seasons on plant species richness and abundance Oecologia (Berlin)85: 8–13.Google Scholar
  18. Carter, M. F. &J. B. Grace. 1986. Relative effects ofJusticia americana litter on germination, seedling and established plants ofPolygonum lapathifolium. Aquatic Bot.23: 341–349.Google Scholar
  19. Chapin, F. S., III,K. van Cleve &M. C. Chapin. 1979. Soil temperature and nutrient cycling in the tussock growth form ofEriophorum vaginatum. J. Ecol.67: 169–189.Google Scholar
  20. Cheplick, G. P. &J. A. Quinn. 1987. The role of seed depth, litter, and fire in the seedling establishment of amphicarpic peanut-grass (Amphicarpum purshii). Oecologia73: 459–463.Google Scholar
  21. Choudhury, D. 1988. Herbivore induced changes in leaf-litter resource quality: A neglected aspect of herbivory in ecosystem nutrient dynamics. Oikos51: 389–393.Google Scholar
  22. Christensen, N. L. 1985. Shrubland fire regimes and their evolutionary consequences. Pages 85–100in S. T. A. Pickett & P. S. White (eds.), The ecology of natural disturbances and patch dynamics. Academic Press, Orlando.Google Scholar
  23. Christensen, O. 1975. Wood litter fall in relation to abscission, environmental factors, and the decomposition cycle in a Danish oak forest. Oikos26: 187–195.Google Scholar
  24. Coelho Neto, A. L. 1987. Overland flow production in a tropical rain forest catchment: The role of litter cover. Catena14: 213–232.Google Scholar
  25. Coley, P. D. 1988. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia74: 531–536.Google Scholar
  26. —,J. P. Bryant &F. S. Chapin, III. 1985. Resource availability and plant herbivore defense. Science230: 895–899.PubMedGoogle Scholar
  27. Collins, B. S. &J. A. Quinn. 1982. Displacement ofAndropogon scoparius on the New Jersey Piedmont by the successional shrubMyrica pennsyhanica. Amer. J. Bot69: 680–689.Google Scholar
  28. Collins, S. L. &R. E. Good. 1987. The seedling regeneration niche: Habitat structure of tree seedlings in an oak-pine forest. Oikos48: 89–98.Google Scholar
  29. Cotrufo, C. 1977. Nutrient content in litterfall of an Appalachian hardwood stand. J. Elisha Mitchell Sci. Soc.93: 27–33.Google Scholar
  30. D’Angela, E., R. J. C. Leon &J. M. Facelli. 1986. Pioneer stages in a secondary succession of a pampean subhumid grassland. Flora178: 261–270.Google Scholar
  31. Davies, R. J. 1988. Sheet mulching as an aid to broad leaved tree establishment. I. The effectiveness of various synthetic sheets compared. Forestry61: 89–96.Google Scholar
  32. Day, A. D., K. L. Ludeke &J. L. Thames. 1986. Revegetation of coal mine soil with forest litter. J. Arid Environ.11: 249–252.Google Scholar
  33. Day, F. P. 1983. Effects of flooding on leaf litter decomposition in microcosms. Oecologia56: 180–184.Google Scholar
  34. DeJong, T. J. &P. G. L. Klinkhamer. 1985. The negative effect of litter of parent plantsof Cirsium vulgare to their offsprings. Autotoxicity or immobilization. Oecologia65: 153–166.Google Scholar
  35. Deregibus, V. A., R. A. Sanchez, J. J. Casai &M. J. Trlica. 1985. Tillering responses to enrichment of red light beneath the canopy in humid natural grasslands. J. Appl. Ecol.22: 199–206.Google Scholar
  36. Dix, R. L. 1960. The effect of burning on the mulch structure and species composition in grasslands in western South Dakota. Ecology41: 49–56.Google Scholar
  37. Dyksterhuis, E. J. &E. M. Schmutz. 1947. Natural mulches or “litter” of grasslands, with kinds and amounts on a southern prairie. Ecology28: 163–179.Google Scholar
  38. Elkins, N. Z., Y. Steinberg &W. G. Whitford. 1982. Factors affecting the applicability of the AET model for decomposition in arid environments. Ecology63: 578–580.Google Scholar
  39. Ellenberg, H. 1988. Vegetation ecology of central Europe. Cambridge University Press, Cambridge.Google Scholar
  40. Escudero, A. &J. M. del Arco. 1987. Ecological significance of the phenology of leaf abscission. Oikos49: 11–14.Google Scholar
  41. —,M. V. Garrido &M. D. Matias. 1987. Decay curves of leaf litter from evergreen and deciduous tree species. Oecol. Plant.8: 81–87.Google Scholar
  42. Evans, R. A. 1972. Germination and establishment ofSalsola in relation to seedbed environment. II. Seed distribution, germination and seedling growth ofSalsola and microenvironment monitoring of the seedbed. Agric. J.64: 219–224.Google Scholar
  43. — &J. Young. 1970. Plant litter and establishment of alien annual weed species in rangeland communities. Weed Science18: 697–703.Google Scholar
  44. Facelli, J. M. 1988. Response to grazing after nine years of cattle exclusion in a Flooding Pampa grassland, Argentina. Vegetatio78: 21–25.Google Scholar
  45. — &W. P. Carson. 1991. Heterogeneity of plant litter accumulation in successional communities. Bull. Torrey Bot. Club118: 00–00.Google Scholar
  46. —,E. D’Angela &R. J. C. León. 1987. Diversity changes during pioneer stages in a subhumid pampean grassland succession. Amer. Midl. Nat.117: 17–25.Google Scholar
  47. —,C. M. Montero &R. J. C. Leon. 1988. Effect of different disturbance regimen on seminatural grasslands from the Subhumid Pampa. Flora180: 241–249.Google Scholar
  48. -& S. T. A. Pickett. In press. Plant litter: Light interception and effects on an oldfield plant community. Ecology.Google Scholar
  49. Feeny, P. P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology51: 565–581.Google Scholar
  50. Fenner, M. 1985. Seed ecology. Chapman & Hall, New York.Google Scholar
  51. Fitter, A. H., D. Atkinson, D. J. Read &M. B. Usher. 1985. Ecological interactions in soil. Plant, microbes, and animals. Blackwell, London.Google Scholar
  52. Flanagan, P. W. &K. van Cleve. 1983. Nutrient cycling in relation to composition and organic matter quality in taiga ecosystems. Canad. J. Forest Res.13: 795–817.Google Scholar
  53. Fowler, N. L. 1986. Microsite requirements for germination and establishment of three grass species. Amer Midl. Nat.115: 131–145.Google Scholar
  54. — 1988. What is a safe site?: Neighbor, litter, germination date, and patch effects. Ecology69: 947–961.Google Scholar
  55. Frankland, J. C., J. D. Ovington &C. Macrae. 1963. Spatial and seasonal variation in soil, litter and ground vegetation in some Lake District Woodlands. J. Ecol.51: 97–112.Google Scholar
  56. Furniss, P. R. &P. Ferrar. 1982. A model of savanna litter decomposition. Ecol. Model.17: 33–51.Google Scholar
  57. Galuten, A. B. 1977. Bayberry and old-field succession on the New Jersey Piedmont. Henry Rutgers undergraduate Thesis. Rutgers College, New Brunswick.Google Scholar
  58. Gill, R. H. 1969. Soil microarthropod abundance following oldfield litter manipulation. Ecology50: 805–816.Google Scholar
  59. Gimingham, C. H. 1972. Ecology of heathlands. Halsted Press, New York.Google Scholar
  60. Goldberg, D. E. &P. A. Werner. 1983. The effects of size of opening in vegetation and litter cover on seedling establishment of goldenrods (Solidago spp.). Oecologia60: 149–155.Google Scholar
  61. Golley, F. B. 1965. Structure and function of an oldfield broomsedge community. Ecol. Monogr.35: 113–137.Google Scholar
  62. — &J. B. Gentry. 1966. A comparison of variety and standing crop of vegetation on a one year and twelve year abandoned field. Oikos15: 185–199.Google Scholar
  63. Grime, J. P. 1979. Plant strategies and vegetation processes. John Wiley & Son, New York.Google Scholar
  64. Grisez, T. J. 1960. Slash helps protect seedlings from deer browsing. J. Forest.58: 385–387.Google Scholar
  65. Gross, K. L. &P. A. Werner. 1982. Colonizing abilities of biennial plant species in relation to ground cover: Implications for their distributions in a successional sere. Ecology63: 921–931.Google Scholar
  66. Grubb, P. J. 1977. The maintenance of species richness in plant communities: The importance of the regeneration niche. Biol. Rev.82: 107–145.Google Scholar
  67. Gunnarsson, T., P. Syndin &A. Tunlid. 1988. The importance of leaf litter fragmentation for bacterial growth. Oikos52: 303–308.Google Scholar
  68. Hagvar, S. 1988. Decomposition studies in an easily-constructed microcosm: Effect of microarthropods and varying soil pH. Pedobiologia31: 293–303.Google Scholar
  69. Hamrick, J. L. &J. M. Lee. 1987. Effects of soil surface topography and litter cover on germination, survival and growth of musk thistle. Amer. J. Bot.74: 451–457.Google Scholar
  70. Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell G. W. Lienkaemper, K. Cromack, Jr. &K. W. Cummins. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res.15: 133–302.Google Scholar
  71. Harper, J. L. 1977. Population biology of plants. Academic Press, New York.Google Scholar
  72. Harrison, P. G. &K. H. Mann 1975. Detritus formation from eel-grass (Zostera marina), the relative effect of fragmentation, leaching and decay. Limnol. Oceanogr.20: 924–934.Google Scholar
  73. Haslam, S. M. 1971. Community regulation inPhragmites communis Trim. I. Monodominant stands. J. Ecol.59: 65–73.Google Scholar
  74. Heady, H. F. 1956. Changes in the central California annual plant community induced by the manipulation of natural mulch. Ecology37: 798–811.Google Scholar
  75. Heidjen, L. A. M. van der, V. Claessen &N. de Cock. 1983. Influence of vegetation on acoustic properties of soils. Oecologia56: 226–233.Google Scholar
  76. Herman, R. K. &W. W. Chilcote. 1965. Effect of seedbed on germination and survival of Douglas fir. Res. Paper Oregon For. Res. Lab.4: 1–28.Google Scholar
  77. Hermy, M. 1987. Path analysis of standing crop and environmental variables in the field layer of two Belgian riverine forests. Vegetatio70: 127–133.Google Scholar
  78. Holland, E. A. &D. C. Coleman. 1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology68: 425–433.Google Scholar
  79. Hollinger, D. Y. 1986. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia70: 291–297.Google Scholar
  80. Hopkins, B. 1966. Vegetation of the Olokemeji forest Reserve, Nigeria. IV. The litter and soil, with special reference to their seasonal changes. J. Ecol.54: 687–703.Google Scholar
  81. Horner, J. D., J. R. Gosz &R. G. Cates. 1988. The role of carbon based metabolites in decomposition in terrestrial ecosystems. Amer. Nat.132: 869–883.Google Scholar
  82. Hulbert, L. C. 1969. Fire and litter effects in undisturbed bluestem prairie in Kansas. Ecology50: 874–877.Google Scholar
  83. Hunt, H. W. 1978. A simulation model for decomposition in grasslands. Pages 155–183in G. Innis (ed.), Grassland simulation models. Springer, New York.Google Scholar
  84. Jenny, H., S. P. Gessel &F. T. Bingham 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regimes. Soil Science.68: 419–432.Google Scholar
  85. Kaiser, P. 1983. The role of soil micro-organisms in savanna ecosystem. Pages 541–558in F Boulière (ed.), Tropical savannas. Elsevier, Oxford.Google Scholar
  86. Keever, C. 1973. Distribution of major forest species in southeastern Pennsylvania. Ecol. Monogr.43: 303–327.Google Scholar
  87. Kellman, M. 1979. Soil enrichment by Neotropical savanna trees. J. Ecol.67: 565–577.Google Scholar
  88. Kenworthy, W. J., C. Currin &G. Thayer. 1987. The abundance, biomass and acetylene reduction activity of bacteria associated to decomposing rhizomes of two seagrasses,Zostera marina andThalassia testudinum. Aquatic Bot.27: 97–119.Google Scholar
  89. Killingbeck, K. T. &S. A. Costigan 1988. Element resorption in a guild of understory shrub species: Niche differentiation and resorption threshold. Oikos53: 366–374.Google Scholar
  90. Knapp, A. K. &T. R. Seastedt 1986. Detritus accumulation limits productivity of tallgrass prairie. BioScience36: 622–668.Google Scholar
  91. Koroleff, A. 1954. Leaf litter as a killer. J. Forestry52: 178–182.Google Scholar
  92. Kozlowski, T. T. &C. E. Ahlgren. 1974. Fire and ecosystems. Academic Press, New York.Google Scholar
  93. Kurihara, Y. &J. Kikkawa. 1986. Trophic relations of decomposers. Pages 127–160in J. Kikkawa & D. J. Anderson (eds.), Community ecology. Patterns and processes. Blackwell, New York.Google Scholar
  94. Larson, F. &W. Whitman 1942. A comparison of used and unused grassland mesas in the badlands of South Dakota. Ecology23: 438–445.Google Scholar
  95. Lee, K. E. 1985. Earthworms. Their ecology and relationship with soil and land use. Academic Press, New York.Google Scholar
  96. Mack, R. N. 1984. Invaders at home range. Nat. Hist.93: 40–47.Google Scholar
  97. — &D. A. Pyke 1984. The demographyof Bromus tectorum: The role of microclimate, grazing and disease. J. Ecol.72: 731–749.Google Scholar
  98. MacMahon, J. A. &F. H. Wagner 1985. The Mojave, Sonora and Chihuahuan deserts of North America. Pages 105–202in M. Evenari, I. Noy-Meir & D. W. Woodall (eds.), Hot deserts and shrublands. Elsevier, New York.Google Scholar
  99. Madge, D. S. 1965. Leaf fall and litter disappearance in tropical forests. Pedobiologia5: 273–288.Google Scholar
  100. Marks, P. L. 1983. On the origin of the field plants of the northeastern United States. Amer. Nat.122: 210–228.Google Scholar
  101. McCarthy, B. C. &J. M. Facelli. 1990. Microdisturbances in oldfields and forests: Implications for woody seedling establishment. Oikos58: 27–33.Google Scholar
  102. — &W. A. Wistendahl. 1988. Hickory (Carya spp.) distribution and replacement in a second-growth oak hickory forest of southeastern Ohio. Amer. Midl. Nat.119: 156–164.Google Scholar
  103. McClaugherty, C. A. &B. Berg. 1987. Cellulose, lignin and nitrogen concentrations as regulating factors in late stages of forest litter decomposition. Pedobiologia30: 101–112.Google Scholar
  104. —,J. Pastor, J. D. Aber &J. M. Melillo. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology66: 259–265.Google Scholar
  105. McGinnies, J. 1987. Effects of hay and straw mulches on the establishment of seeded grasses and legumes on rangeland and a coal strip mine. J. Range Managern.40: 119–121.Google Scholar
  106. McKinney, A. L. 1929. Effect of forest litter on soil temperature and soil freezing in autumn and winter. Ecology10: 312–321.Google Scholar
  107. Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology59: 465–472.Google Scholar
  108. —,E. O. Box &R. Thompson. 1982. World patterns and amounts of terrestrial plant litter production. BioScience32: 125–128.Google Scholar
  109. Mellinger, M. V. &S. J. McNaughton. 1975. Structure and function of successional vascular plant communities in central New York. Ecol. Monogr.45: 161–182.Google Scholar
  110. Monk, C. D. 1966. An ecological significance of evergreeness. Ecology47: 504–505.Google Scholar
  111. — &F. C. Gabrielson, Jr. 1985. Effect of shade, litter and root competition on old field vegetation in South Carolina. Bull. Torrey Bot. Club112: 383–392.Google Scholar
  112. Montana, C., E. Ezcurra, A. Camillo &J. P. Delhome. 1988. Decomposition of litter in grasslands—Arid and non arid environments. J. Arid Environ.14: 55–60.Google Scholar
  113. Mooney, H. A. &D. J. Parson 1973. Structure and function of the California Chaparral. An example from San Dimas. Pages 83–112in F. di Castri & H. A. Mooney (eds.), Mediterranean type ecosystems. Origin and structure. Springer, New York.Google Scholar
  114. Moorhead, D. L. &J. F. Reynolds. 1989. Mechanisms of surface litter mass loss in the northern Chihuahuan desert: A reinterpretation. J. Arid Environ.16: 157–163.Google Scholar
  115. Moral, R. del. 1972. On the variability of chlorogenic acid concentration. Oecologia9: 289–300.Google Scholar
  116. Muller, R. N., P. J. Kalisz &T. W. Kimmerer. 1987. Intraspecific variation in production of astringent phenolics over a vegetation-resource availability gradient. Oecologia72: 211–215.Google Scholar
  117. Mutch, R. W. 1970. Wildland fires and ecosytems-A hypothesis. Ecology51: 1046–1051.Google Scholar
  118. Noy-Meir, I. 1985. Desert ecosystem structure and function. Pages 93–104in M. Evenari, I. Noy-Meir & D. W. Woodall (eds.), Hot deserts and shrublands. Elsevier, New York.Google Scholar
  119. Odum, E. P. 1960. Organic production and turnover in old field succession. Ecology41: 34–49.Google Scholar
  120. — 1969. The strategy of ecosystem development. Science164: 262–270.PubMedGoogle Scholar
  121. Olson, J. S. 1963. Energy storage and the balance of production and decomposition in ecological systems. Ecology44: 323–331.Google Scholar
  122. Orndorff, K. A. &G. E. Lang. 1981. Leaf litter redistribution in a West Virginia hardwood forest. J. Ecol.69: 225–235.Google Scholar
  123. Otto, C. &L. M. Nilsson. 1981. Why do beech and oak trees retain leaves until spring? Oikos27: 387–390.Google Scholar
  124. Owen, D. F. 1978. The effect of a consumer,Phytomiza ilicis, on seasonal leaf fall in the holly,Ilex aquifolium. Oikos31: 268–271.Google Scholar
  125. — &R. G. Wiegert. 1976. Do consumers maximize plant fitness? Oikos27: 488–492.Google Scholar
  126. Pastor, J., M. A. Stillwell &D. Tilman. 1987. Little bluestem litter dynamics in Minnesota oldfields. Oecologia72: 327–330.Google Scholar
  127. Penfound, W. T. 1964. Effect of denudation on the productivity of grasslands. Ecology45: 838–845.Google Scholar
  128. Perino, J. V. &P. G. Risser. 1972. Some aspects of structure and function in Oklahoma oldfield succession. Bull. Torrey Bot. Club99: 233–239.Google Scholar
  129. Persson, S., N. Malmer &B. Wallén. 1987. Leaf litter fall and soil acidity during half a century of secondary succession in a temperate deciduous forest. Vegetatio73: 31–45.Google Scholar
  130. Peterson, C. H. 1984. Does a rigorous criterion for environmental identity preclude the existence of multiple stable points? Amer. Nat.124: 127–133.Google Scholar
  131. Pickett, S. T. A., S. L. Collins &J. J. Armesto. 1987. Models, mechanisms and pathways of succession. Bot. Rev.53: 335–371.Google Scholar
  132. Polunin, N. V. C. 1984. The decomposition of emergent macrophytes in fresh water. Adv. Ecol. Res.14: 115–166.Google Scholar
  133. Prusienkiewicz, Z. &M. Bigos. 1978. Rhythmicity of accumulation and decomposition of forest litter in three mixed forest stands on the soils with different types of forest floor. Ekol. Polska26: 325–345.Google Scholar
  134. Rhoades, D. F. &R. G. Cates. 1976. Towards a general theory of plant antiherbivores chemistry. Rec. Adv. Phytochem.10: 168–213.Google Scholar
  135. Rice, E. L. 1979. Allelopathy. An update. Bot. Rev.45: 15–109.Google Scholar
  136. — &R. L. Parenti. 1978. Causes of decreases in productivity in undisturbed tallgrass prairie. Amer. J. Bot.65: 1091–1097.Google Scholar
  137. Richards, B. N. 1987. The microbiology of terrestrial ecosystems. Longman, London.Google Scholar
  138. Riechert, S. E. &L. Bishop. 1990. Prey control by an assemblage of generalist predators: Spiders in garden test systems. Ecology71: 1441–1450.Google Scholar
  139. Ring, C. B., II,R. A. Nicholson &J. L. Launchbaugh. 1985. Vegetation traits of patch-grazed Rangeland in Western-Central Kansas. J. Range Managern.38: 51–55.Google Scholar
  140. Risley, L. S. &D. A. Crossley. 1988. Herbivore-caused greenfall in the southern Appalachians. Ecology69: 1118–1127.Google Scholar
  141. Risser, P. G., E. C. Birney, H. D. Blocker, S. W. May, W. J. Parton &J. A. Wiens. 1979. The true prairie ecosystem. Hutchinson Ross Publ. Co., East Stroudsburg, Pennsylvania.Google Scholar
  142. Rodell, C. F. 1978. Simulation of grasshopper populations in a grassland ecosystem. Pages 127–154in G. Innis (ed.), Grassland simulation models. Springer, New York.Google Scholar
  143. Sala, O. E. &W. K. Lauenroth. 1983. Small rainfall events: An ecological role in semiarid regions. Oecologia53: 301–303.Google Scholar
  144. Santos, P. F., N. Z. Elkins, Y. Steinberger &W. G. Whitford. 1984. A comparison of surface and buriedLarrea tridentata leaf litter decomposition in North American hot deserts. Ecology65: 278–284.Google Scholar
  145. Scheu, S. 1987. The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia72: 197–201.Google Scholar
  146. Schlatterer, E. L. &E. W. Tisdale. 1969. Effect of litter ofArtemisia, Chrysothamnus andTortula on germination and growth of three perennial grasses. Ecology50: 869–873.Google Scholar
  147. Seastedt, T. R. &D. A. Crosley. 1983. Nutrients in forest litter treated with naphthalene and simulated throughfall: A field microcosm study. Soil Biol. Biochem.15: 159–165.Google Scholar
  148. Shaver, G. R. 1983. Mineral nutrition and leaf longevity inLedum palustre. The role of individual nutrients and timing of leaf mortality. Oecologia56: 160–165.Google Scholar
  149. Shaw, M. W. 1968. Factors affecting the regeneration of sessile oak (Quercus petrea) in North Wales. II. Acorn losses and germination under field condition. J. Ecol.56: 647–666.Google Scholar
  150. Shure, D. J. &M. R. Gottschalk. 1985. Litterfall patterns in a floodplain forest. Amer. Midl. Nat114: 98–111.Google Scholar
  151. — &D. L. Phillips. 1987. Litterfall patterns within different sized disturbance patches in a Southern Appalachian Mountain forest. Amer. Midl. Nat.118: 348–357.Google Scholar
  152. Siegler, D. &P. W. Price. 1976. Secondary compounds in plants: Primary functions. Amer. Nat.110: 101–105.Google Scholar
  153. Simpson, L. A. &F. A. Grumbs. 1986a A system of soil crop management for the wet season production of food crops on a heavy clay soil in Guyana. 1. Effect of mulching and tillage on soil properties and crop yield. Trop. Agric.63: 305–311.Google Scholar
  154. ——. 1986b. A system of crop and soil management for the wet season production of food crops on a heavy clay soil in Guyana. 2. Effect of mulching and tillage on germination, growth, nutrient uptake and yield. Trop. Agric.63: 311–315.Google Scholar
  155. Small, J. A., M. F. Buell, H. F. Buell &T. G. Siccama. 1971. Old-field succession on the New Jersey Piedmont—The first year. William L. Hutcheson Mem. For. Bull.2: 26–30.Google Scholar
  156. Sousa, W. P. &J. H. Connell. 1985. Further comments on the evidence for multiple stable points in natural communities. Amer. Nat.125: 612–615.Google Scholar
  157. Spain, A. V. &R. P. Lefevre. 1987. Breakdown of four litters of contrasting quality in a tropical Australian rainforest. J. Appl. Ecol.24: 279–288.Google Scholar
  158. Spence, D. H. 1982. The zonation of plants in fresh water lakes. Adv. Ecol. Res.12: 37–125.Google Scholar
  159. Sprugel, D. 1984. Diversity, biomass, and nutrient cycling changes during stand development in wave regenerated balsam fir forest. Ecol. Monogr.54: 165–186.Google Scholar
  160. Staaf, H. 1987. Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types. Oecologia.72: 58–64.Google Scholar
  161. Stanton, N. L. 1979. Patterns of species diversity in temperate and tropical litter mites. Ecology60: 295–304.Google Scholar
  162. Stiling, P. &D. Simberloff. 1989. Leaf abscission. Induced defense against pests or response to damage? Oikos55: 43–49.Google Scholar
  163. Srinner, B. R., D. A. Crossley, Jr.,E. P. Odum &R. L. Tood. 1984. Nutrient budget and internal cycling of N, P, K, Ca and Mg in conventional tillage, no tillage and oldfield ecosystems on the Georgia Piedmont. Ecology65: 354–369.Google Scholar
  164. Stone, E. C. &R. B. Vasey. 1968. Preservation of coastal redwood on alluvial flats. Science159: 157–161.PubMedGoogle Scholar
  165. Stowe, L. S. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field. J. Ecol.67: 1065–1085.Google Scholar
  166. Strojan, C. L., D. C. Randall &F. B. Turner. 1987. Relationship of leaf litter decomposition rates to rainfall in the Mojave desert. Ecology68: 741–743.Google Scholar
  167. Sydes, C. &J. P. Grime 1981a. Effect of tree leaf litter on herbaceous vegetation in the deciduous woodlands. I. Field investigations. J. Ecol.69: 237–248.Google Scholar
  168. ——. 1981b. Effects of tree leaf litter on herbaceous vegetation in the deciduous woodlands. II An experimental investigation. J. Ecol.69: 249–262.Google Scholar
  169. Szczeponska, W. 1977. The effects of remains of halophytes on the growth ofPhragmites communis Trin. andTypha latifolia L. Ekol. Polska25: 437–446.Google Scholar
  170. Tao, D. L., Z. B. Xu &X. Li. 1987. Effect of litter layer on natural regeneration of companion tree species in the Korean pine forest. Env. Exper. Bot.27: 53–66.Google Scholar
  171. Terborgh, J. &S. Robinson. 1986. Guilds and their utility in ecology. Pages 65–90in J. Kikkawa & D. J. Anderson (eds.), Community ecology. Patterns and processes. Blackwell, New York.Google Scholar
  172. Thompson, K., J. P. Grime &G. Mason. 1977. Seed germination in response to diurnal fluctuations of temperature. Nature267: 147–149.PubMedGoogle Scholar
  173. Trèmoliere, M., R. Carbinier, A. Exiger &J. C. Turlot. 1988. Un example d’interaction non competitive entre espèces ligneuses: Le cas du lierre arborescent (Hedera helix L.) dans la forête alluviale. Oecol. Generalis9: 187–209.Google Scholar
  174. Uetz, G. W. 1974. A method for measuring habitat space in studies of hardwood forest litter arthopods. Environ. Entomol.3: 313–315.Google Scholar
  175. Valk, A. G. van der. 1986. The impact of litter and annual plants on recruitment from the seed bank of a lacustrine wetland. Aquatic Bot.24: 13–26.Google Scholar
  176. Váazquez-Yanes, C., A. Orozco-Segovia, E. Rincón, M. E. Sánchez-Coronado, P. Huante, J. R. Toledo &V. L. Barradas. 1990. Light beneath the litter in a tropical forest: Effect on seed germination. Ecology71: 1952–1958.Google Scholar
  177. Vitousek, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology65: 285–298.Google Scholar
  178. Wahebh, M. &A. M. Mahasheh. 1985. Some aspects of decomposition of leaf litter of the seagrassHalophila stipulacea from the gulf of Aqaba (Jordan). Aquatic Bot.21: 237–244.Google Scholar
  179. Walsh, R. P. D. &P. J. Voight. 1977. Vegetation litter: An underestimated variable in hydrology and geomorphology. J. Biogeogr.4: 253–274.Google Scholar
  180. Waring, R. H. &W. H. Schlesinger. 1985. Forest ecosystems. Concepts and management. Academic Press, New York.Google Scholar
  181. Warren, A. L. & B. L. Zimmerman. 1987. Ecology, abundance and diversity of litter anurans in the Central Amazon, Brasil. (Abstract.) The Annual Meeting of The Association for Tropical Biology, Columbus, Ohio, USA.Google Scholar
  182. Watt, A. S. 1956. Contributions to the ecology of bracken (Pteridium aquilinum). VII. Bracken and litter. 1. The origin of rings. New Phytol.55: 369–388.Google Scholar
  183. — 1970. Contribution to the ecology of bracken (Pteridium aquilinum). VII. Bracken and litter. 3. The cycle of change. New Phytol69: 431–449.Google Scholar
  184. — 1974. Senescence and rejuvenation in ungrazed chalk grassland (Grassland B) in Breckland: The significance of litter and moles. J. Appl. Ecol.23: 1157–1171.Google Scholar
  185. Weaver, J. E. &N. W. Rowland. 1952. Effect of excessive natural mulch on the development, yield, and structure of a native grassland. Bot. Gaz.114: 1–19.Google Scholar
  186. Weigert, R. G., D. C. Coleman &E. P. Odum. 1970. Energetics of litter-soil subsystems. Pages 137–148in J. Phillipson (ed.), Methods of study of soil ecology. UNESCO, Paris.Google Scholar
  187. Welbank, P. J. 1963. Toxin production during decay ofAgropyron repens (couch grass) and other species. Weed Res.3: 205–214.Google Scholar
  188. Werner, P. A. 1975. The effect of plant litter on germination in teasel,Dipsacus sylvestris. Amer. Midl. Nat.94: 470–476.Google Scholar
  189. West, N. E. 1979. Formation, distribution, and function of plant litter in desert ecosystems. Pages 647–659in J. A. Perry & D. W. Goodall (eds.), Arid land ecosystems. Structure, function, and management. IBP vol 16. Cambridge University Press, Cambridge.Google Scholar
  190. — 1985. Aboveground litter production of three temperate semidesert shrubs. Amer. Midl. Nat.113: 158–169.Google Scholar
  191. Whitford, W. G., V. Meentemeyer, T. R. Seastedt, K. Comack, Jr.,D. A. Crossley, P. Santos, R. L. Todd &J. B. Waide. 1982. Exceptions to the AET model: Deserts and clearcut forest. Ecology62: 275–277.Google Scholar
  192. Whittaker, R. H. 1970. Communities and ecosystems. MacMillan, New York.Google Scholar
  193. — &G. M. Woodwell. 1969. Structure, production, and diversity of the oak-pine forest at Brookhaven. J. Ecol.57: 157–174.Google Scholar
  194. Wiegert, R. G. &F. C. Evans. 1964. Primary production and the disappearance of dead vegetation of an old-field. Ecology45: 49–63.Google Scholar
  195. Wiens, J. A. 1973. Interterritorial habitat variation in grasshopper and savanna sparrows. Ecology54: 877–884.Google Scholar
  196. Williams, R. J. &D. H. Ashton. 1987. Effect of disturbance and grazing by cattle on the dynamics of heathlands and grasslands communities on the Bogong High Plains, Victoria. Austral. J. Bot.35:413–431.Google Scholar
  197. Williamson, G. B. &E. M. Black. 1981. High temperature of forest fires under pines as a selective advantage over oaks. Nature293: 643–644.Google Scholar
  198. Willms, W. D. 1988. Response of rough fescue (Festuca scabrella) to light, water, temperature and litter removal, under controlled conditions. Canad. J. Bot.66: 429–434.Google Scholar
  199. —,S. Smoliak &A. W. Bailey. 1986. Herbage production following litter removal on Alberta native grasslands. J. Range Managern.39: 536–539.Google Scholar
  200. Winn, A. A. 1985. Effects of seed size and microsite on seedling emergenceof Prunella vulgaris in four habitats. J. Ecol.73: 831–840.Google Scholar

Copyright information

© The New York Botanical Garden 1991

Authors and Affiliations

  • José M. Facelli
    • 1
  • Steward T. A. Pickett
    • 1
  1. 1.Institute of Ecosystem Studies Mary Flagler Cary ArboretumNew York Botanical GardenMillbrook

Personalised recommendations