Skip to main content
Log in

Plant litter: Its dynamics and effects on plant community structure

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

We discuss the dynamics of plant litter, the effects of litter on the chemical and physical environment, the direct and indirect effects of plant litter on plant populations and communities, and different adaptative traits that may be related to litter accumulation. The production of litter depends primarily on the site productivity, but other properties of the environment, as well as chance, may introduce important variation. The existence of time lags between the production of plant organs and their transformation into litter appears as a relevant character of litter dynamics seldom included in models. Herbivory, and other processes that destroy biomass or reduce productivity, may reduce the amount of litter produced. The destruction of litter encompasses a complex of interactions. The main processes, including physical and chemical degradation, consumption by invertebrates and decomposition, are differentially affected by the environment and by the physical and chemical characteristics of the litter itself. The relative importance of those processes varies among systems.

Litter alters the physical and chemical environment directly and indirectly. The decomposition of litter may release both nutrients and phytotoxic substances into the soil. The physical changes produced by litter also alter the activity of decomposers, resulting in an indirect effect on the chemical environment. The accumulated litter intercepts light, shading seeds and seedlings, and reduces the thermal amplitude in the soil. By reducing maximum soil temperatures, and creating a barrier to water vapor diffusion, litter reduces evaporation from the soil. However, litter may also diminish water availability when it retains a large proportion of rainfall. Litter creates a physical barrier for seedling and sprout emergence and to seeds reaching the soil.

The heterogeneity introduced into the abiotic environment by the patchy accumulation of litter may affect community structure. This effect may be both direct (when the litter of one species affects the performance of a second species) or indirect (when litter produced by one species alters the outcome of the interaction between a second and a third species).

Litter tolerance, timing of litterfall to optimize external nutrient recycling, and accumulation of litter to deter competitors (either through physical or chemical effects) have been postulated as strategies associated with litter accumulation. The existing evidence shows that only tolerance to litter accumulation admits adaptative value as the most likely explanation.

Resumen

En ésta revisión bibliográfica analizamos la dinámica de la broza, sus efectos sobre el ambiente fisico y quimíco, y los efectos directos e indirectos de la acumulación de broza sobre la estructura y dinámica de las poblaciones y comunidades vegetales. Finalmente, analizamos distintas adaptaciones de las poblaciones vegetales relacionadas con la acumulación de broza.

La cantidad de broza acumulada en un sitio depende primariamente de su productividad, pero varios otros factores ambientales, así como el azar, pueden introducir importantes variaciones. El lapso entre la formatión de un órgano y su muerte y caída, puede ser un factor de gran importancia en la dinámica de la broza. El consumo heterotrófico, así como otros factores fisicos que destruyen biomasa o reducen la productividad, también puede afectar su acumulación. La destructión de la broza constituye un proceso cuasi-sucesional. Los principales subprocesos involucrados—fragmentatión fisica, consumo por invertebrados y descomposición—son controlados por factores ambientales y por las propiedades de la broza misma.

La acumulación de broza puede afectar profundamente el ambiente físico y químico. Los cambios fisicos que induce pueden alterar la actividad de los descomponedores, mientras que su descomposición libera nutrientes y compuestos fitotóxicos en el suelo. La broza intercepta luz, sombreando semillas y plántulas, y reduciendo la amplitud térmica del suelo. Al reducir la temperature del suelo, y al crear una barrera a la difusión del vapor de agua, la broza reduce la evaporación desde el suelo. Sin embargo, puede también disminuir la disponibilidad de agua, si retiene una proporción considerable de la lluvia. Además, la broza constituye un barrera fisica que puede impedir la llegada al suelo de algunas semillas, así como dificultar la emergencia de plántulas y brotes.

Los patrones de acumulación de broza introducen heterogeneidad temporal y espacial, que puede afectar la estructura y dinámica de la comunidad. Sus efectos pueden ser directos (cuando la presencia de broza afecta el éxito de una población) o indirectos (cuando el efecto de la broza sobre una población altera el resultado de la interacción con una segunda). Adicionalmente, la broza puede afectar las comunidades de invertebrados, lo que puede a su vez repercutir en la comunidad vegetal.

Varios autores han propuesto que la tolerancia a la presencia de broza, la regulación del ciclo de nutrientes mediante distintas estrategias foliares, y la producción de broza como un medio de combatir competidores mediante sus efectos fisicos o químicos, son componentes de estrategias adaptativas de distintas poblaciones. La evidencia disponible sugiere que sólo la tolerancia a la broza acepta valor adaptativo como explicación más verosímil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abdul-Wahab, A. &E. Rice. 1967. Plant inhibition by Johnson grass and its possible significance in old field succession. Bull Torrey Bot. Club94: 486–497.

    Google Scholar 

  • Al-Mufti, M. M., C. L. Sydes, S. B. Furness &S. R. Band. 1977. A quantitative analysis of shoot phenology & dominance in herbaceous vegetation. J. Ecol.65: 759–791.

    Google Scholar 

  • Anderson, J. M. 1975. Succession, diversity and trophic relationships in some soil animals in decomposing leaf litter. J. Animal Ecol.44: 475–495.

    Google Scholar 

  • Andren, O. &K. Paustian. 1987. Barley straw decomposition in the field: A comparison of models. Ecology68: 1190–1200.

    Google Scholar 

  • Andrzejewska, L. &G. Gyllenberg. 1980. Small herbivore subsystem. Pages 201–267in A. I. Breymeyer & G. M. van Dyne (eds.), Grasslands, system analysis, and man. IBP 19. Cambridge University Press, New York.

    Google Scholar 

  • Bakker, J. P. 1985. The impact of grazing on plant communities, plant populations and soil conditions in salt marshes. Vegetatio62: 391–398.

    Google Scholar 

  • Ballaré, C. L., R. A. Sánchez, A. L. Scopel &C. M. Ghersa 1988. Morphological responses ofDatura ferox L. seedlings to the presence of neighbors. The relationship with canopy microclimate. Oecologia76: 288–293.

    Google Scholar 

  • Barrett, L. I. 1931. Influence of forest litter on the germination and early survival of chestnut oak,Quercus montana Willd. Ecology12: 476–484.

    Google Scholar 

  • Beatty, S. W. &O. D. V. Sholes. 1988. Leaf litter effect on plant species composition of deciduous forest treefall pits. Canad. J. Forest Res.18: 553–559.

    Google Scholar 

  • Berendse, F., B. Berg &E. Bosatta. 1987. The effect of lignin and nitrogen on the decomposition of litter in nutrient poor ecosystems: A theoretical approach. Canad. J. Bot.65: 1116–1121.

    CAS  Google Scholar 

  • Bergelson, J. 1990. Life after death: site preemption by the remains. ofPoa annua. Ecology71:2157–2165.

    Google Scholar 

  • Boerner, R. E. J. 1983. Nutrient dynamics of vegetation and detritus following two intensities of fire in the New Jersey Pine Barrens. Oecologia59: 129–134.

    Google Scholar 

  • Bokhari, V. G. 1978. Allelopathy among prairie plants and its possible ecological significance. Ann. Bot.42: 127–136.

    Google Scholar 

  • Borchet, M. I., F. W. Davies &J. Michaelsen. 1989. Interactions of factors affecting seedling recruitment of blue oak (Quercus douglasii) in California. Ecology70: 389–404.

    Google Scholar 

  • Bray, J. R. &E. Gorham. 1964. Litter production in forests of the world. Adv. Ecol. Res. 2: 101–187.

    Google Scholar 

  • Bruederle, L. P. &F. W. Stearns. 1985. Ice storms damage to a southern Wisconsin mesic forest. Bull. Torrey Bot. Club112: 167–175.

    Google Scholar 

  • Carson, W. P. &C. J. Peterson. 1990. The role of litter in an old-field community: Impact of litter quantity in different seasons on plant species richness and abundance Oecologia (Berlin)85: 8–13.

    Google Scholar 

  • Carter, M. F. &J. B. Grace. 1986. Relative effects ofJusticia americana litter on germination, seedling and established plants ofPolygonum lapathifolium. Aquatic Bot.23: 341–349.

    Google Scholar 

  • Chapin, F. S., III,K. van Cleve &M. C. Chapin. 1979. Soil temperature and nutrient cycling in the tussock growth form ofEriophorum vaginatum. J. Ecol.67: 169–189.

    CAS  Google Scholar 

  • Cheplick, G. P. &J. A. Quinn. 1987. The role of seed depth, litter, and fire in the seedling establishment of amphicarpic peanut-grass (Amphicarpum purshii). Oecologia73: 459–463.

    Google Scholar 

  • Choudhury, D. 1988. Herbivore induced changes in leaf-litter resource quality: A neglected aspect of herbivory in ecosystem nutrient dynamics. Oikos51: 389–393.

    Google Scholar 

  • Christensen, N. L. 1985. Shrubland fire regimes and their evolutionary consequences. Pages 85–100in S. T. A. Pickett & P. S. White (eds.), The ecology of natural disturbances and patch dynamics. Academic Press, Orlando.

    Google Scholar 

  • Christensen, O. 1975. Wood litter fall in relation to abscission, environmental factors, and the decomposition cycle in a Danish oak forest. Oikos26: 187–195.

    Google Scholar 

  • Coelho Neto, A. L. 1987. Overland flow production in a tropical rain forest catchment: The role of litter cover. Catena14: 213–232.

    Google Scholar 

  • Coley, P. D. 1988. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia74: 531–536.

    Google Scholar 

  • —,J. P. Bryant &F. S. Chapin, III. 1985. Resource availability and plant herbivore defense. Science230: 895–899.

    PubMed  Google Scholar 

  • Collins, B. S. &J. A. Quinn. 1982. Displacement ofAndropogon scoparius on the New Jersey Piedmont by the successional shrubMyrica pennsyhanica. Amer. J. Bot69: 680–689.

    Google Scholar 

  • Collins, S. L. &R. E. Good. 1987. The seedling regeneration niche: Habitat structure of tree seedlings in an oak-pine forest. Oikos48: 89–98.

    Google Scholar 

  • Cotrufo, C. 1977. Nutrient content in litterfall of an Appalachian hardwood stand. J. Elisha Mitchell Sci. Soc.93: 27–33.

    CAS  Google Scholar 

  • D’Angela, E., R. J. C. Leon &J. M. Facelli. 1986. Pioneer stages in a secondary succession of a pampean subhumid grassland. Flora178: 261–270.

    Google Scholar 

  • Davies, R. J. 1988. Sheet mulching as an aid to broad leaved tree establishment. I. The effectiveness of various synthetic sheets compared. Forestry61: 89–96.

    Google Scholar 

  • Day, A. D., K. L. Ludeke &J. L. Thames. 1986. Revegetation of coal mine soil with forest litter. J. Arid Environ.11: 249–252.

    Google Scholar 

  • Day, F. P. 1983. Effects of flooding on leaf litter decomposition in microcosms. Oecologia56: 180–184.

    Google Scholar 

  • DeJong, T. J. &P. G. L. Klinkhamer. 1985. The negative effect of litter of parent plantsof Cirsium vulgare to their offsprings. Autotoxicity or immobilization. Oecologia65: 153–166.

    Google Scholar 

  • Deregibus, V. A., R. A. Sanchez, J. J. Casai &M. J. Trlica. 1985. Tillering responses to enrichment of red light beneath the canopy in humid natural grasslands. J. Appl. Ecol.22: 199–206.

    Google Scholar 

  • Dix, R. L. 1960. The effect of burning on the mulch structure and species composition in grasslands in western South Dakota. Ecology41: 49–56.

    Google Scholar 

  • Dyksterhuis, E. J. &E. M. Schmutz. 1947. Natural mulches or “litter” of grasslands, with kinds and amounts on a southern prairie. Ecology28: 163–179.

    Google Scholar 

  • Elkins, N. Z., Y. Steinberg &W. G. Whitford. 1982. Factors affecting the applicability of the AET model for decomposition in arid environments. Ecology63: 578–580.

    Google Scholar 

  • Ellenberg, H. 1988. Vegetation ecology of central Europe. Cambridge University Press, Cambridge.

    Google Scholar 

  • Escudero, A. &J. M. del Arco. 1987. Ecological significance of the phenology of leaf abscission. Oikos49: 11–14.

    Google Scholar 

  • —,M. V. Garrido &M. D. Matias. 1987. Decay curves of leaf litter from evergreen and deciduous tree species. Oecol. Plant.8: 81–87.

    Google Scholar 

  • Evans, R. A. 1972. Germination and establishment ofSalsola in relation to seedbed environment. II. Seed distribution, germination and seedling growth ofSalsola and microenvironment monitoring of the seedbed. Agric. J.64: 219–224.

    Google Scholar 

  • — &J. Young. 1970. Plant litter and establishment of alien annual weed species in rangeland communities. Weed Science18: 697–703.

    Google Scholar 

  • Facelli, J. M. 1988. Response to grazing after nine years of cattle exclusion in a Flooding Pampa grassland, Argentina. Vegetatio78: 21–25.

    Google Scholar 

  • — &W. P. Carson. 1991. Heterogeneity of plant litter accumulation in successional communities. Bull. Torrey Bot. Club118: 00–00.

    Google Scholar 

  • —,E. D’Angela &R. J. C. León. 1987. Diversity changes during pioneer stages in a subhumid pampean grassland succession. Amer. Midl. Nat.117: 17–25.

    Google Scholar 

  • —,C. M. Montero &R. J. C. Leon. 1988. Effect of different disturbance regimen on seminatural grasslands from the Subhumid Pampa. Flora180: 241–249.

    Google Scholar 

  • -& S. T. A. Pickett. In press. Plant litter: Light interception and effects on an oldfield plant community. Ecology.

  • Feeny, P. P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology51: 565–581.

    Google Scholar 

  • Fenner, M. 1985. Seed ecology. Chapman & Hall, New York.

    Google Scholar 

  • Fitter, A. H., D. Atkinson, D. J. Read &M. B. Usher. 1985. Ecological interactions in soil. Plant, microbes, and animals. Blackwell, London.

    Google Scholar 

  • Flanagan, P. W. &K. van Cleve. 1983. Nutrient cycling in relation to composition and organic matter quality in taiga ecosystems. Canad. J. Forest Res.13: 795–817.

    CAS  Google Scholar 

  • Fowler, N. L. 1986. Microsite requirements for germination and establishment of three grass species. Amer Midl. Nat.115: 131–145.

    Google Scholar 

  • — 1988. What is a safe site?: Neighbor, litter, germination date, and patch effects. Ecology69: 947–961.

    Google Scholar 

  • Frankland, J. C., J. D. Ovington &C. Macrae. 1963. Spatial and seasonal variation in soil, litter and ground vegetation in some Lake District Woodlands. J. Ecol.51: 97–112.

    Google Scholar 

  • Furniss, P. R. &P. Ferrar. 1982. A model of savanna litter decomposition. Ecol. Model.17: 33–51.

    Google Scholar 

  • Galuten, A. B. 1977. Bayberry and old-field succession on the New Jersey Piedmont. Henry Rutgers undergraduate Thesis. Rutgers College, New Brunswick.

    Google Scholar 

  • Gill, R. H. 1969. Soil microarthropod abundance following oldfield litter manipulation. Ecology50: 805–816.

    Google Scholar 

  • Gimingham, C. H. 1972. Ecology of heathlands. Halsted Press, New York.

    Google Scholar 

  • Goldberg, D. E. &P. A. Werner. 1983. The effects of size of opening in vegetation and litter cover on seedling establishment of goldenrods (Solidago spp.). Oecologia60: 149–155.

    Google Scholar 

  • Golley, F. B. 1965. Structure and function of an oldfield broomsedge community. Ecol. Monogr.35: 113–137.

    Google Scholar 

  • — &J. B. Gentry. 1966. A comparison of variety and standing crop of vegetation on a one year and twelve year abandoned field. Oikos15: 185–199.

    Google Scholar 

  • Grime, J. P. 1979. Plant strategies and vegetation processes. John Wiley & Son, New York.

    Google Scholar 

  • Grisez, T. J. 1960. Slash helps protect seedlings from deer browsing. J. Forest.58: 385–387.

    Google Scholar 

  • Gross, K. L. &P. A. Werner. 1982. Colonizing abilities of biennial plant species in relation to ground cover: Implications for their distributions in a successional sere. Ecology63: 921–931.

    Google Scholar 

  • Grubb, P. J. 1977. The maintenance of species richness in plant communities: The importance of the regeneration niche. Biol. Rev.82: 107–145.

    Google Scholar 

  • Gunnarsson, T., P. Syndin &A. Tunlid. 1988. The importance of leaf litter fragmentation for bacterial growth. Oikos52: 303–308.

    Google Scholar 

  • Hagvar, S. 1988. Decomposition studies in an easily-constructed microcosm: Effect of microarthropods and varying soil pH. Pedobiologia31: 293–303.

    Google Scholar 

  • Hamrick, J. L. &J. M. Lee. 1987. Effects of soil surface topography and litter cover on germination, survival and growth of musk thistle. Amer. J. Bot.74: 451–457.

    Google Scholar 

  • Harmon, M. E., J. F. Franklin, F. J. Swanson, P. Sollins, S. V. Gregory, J. D. Lattin, N. H. Anderson, S. P. Cline, N. G. Aumen, J. R. Sedell G. W. Lienkaemper, K. Cromack, Jr. &K. W. Cummins. 1986. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res.15: 133–302.

    Google Scholar 

  • Harper, J. L. 1977. Population biology of plants. Academic Press, New York.

    Google Scholar 

  • Harrison, P. G. &K. H. Mann 1975. Detritus formation from eel-grass (Zostera marina), the relative effect of fragmentation, leaching and decay. Limnol. Oceanogr.20: 924–934.

    CAS  Google Scholar 

  • Haslam, S. M. 1971. Community regulation inPhragmites communis Trim. I. Monodominant stands. J. Ecol.59: 65–73.

    Google Scholar 

  • Heady, H. F. 1956. Changes in the central California annual plant community induced by the manipulation of natural mulch. Ecology37: 798–811.

    Google Scholar 

  • Heidjen, L. A. M. van der, V. Claessen &N. de Cock. 1983. Influence of vegetation on acoustic properties of soils. Oecologia56: 226–233.

    Google Scholar 

  • Herman, R. K. &W. W. Chilcote. 1965. Effect of seedbed on germination and survival of Douglas fir. Res. Paper Oregon For. Res. Lab.4: 1–28.

    Google Scholar 

  • Hermy, M. 1987. Path analysis of standing crop and environmental variables in the field layer of two Belgian riverine forests. Vegetatio70: 127–133.

    Google Scholar 

  • Holland, E. A. &D. C. Coleman. 1987. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. Ecology68: 425–433.

    Google Scholar 

  • Hollinger, D. Y. 1986. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Oecologia70: 291–297.

    Google Scholar 

  • Hopkins, B. 1966. Vegetation of the Olokemeji forest Reserve, Nigeria. IV. The litter and soil, with special reference to their seasonal changes. J. Ecol.54: 687–703.

    Google Scholar 

  • Horner, J. D., J. R. Gosz &R. G. Cates. 1988. The role of carbon based metabolites in decomposition in terrestrial ecosystems. Amer. Nat.132: 869–883.

    Google Scholar 

  • Hulbert, L. C. 1969. Fire and litter effects in undisturbed bluestem prairie in Kansas. Ecology50: 874–877.

    Google Scholar 

  • Hunt, H. W. 1978. A simulation model for decomposition in grasslands. Pages 155–183in G. Innis (ed.), Grassland simulation models. Springer, New York.

    Google Scholar 

  • Jenny, H., S. P. Gessel &F. T. Bingham 1949. Comparative study of decomposition rates of organic matter in temperate and tropical regimes. Soil Science.68: 419–432.

    CAS  Google Scholar 

  • Kaiser, P. 1983. The role of soil micro-organisms in savanna ecosystem. Pages 541–558in F Boulière (ed.), Tropical savannas. Elsevier, Oxford.

    Google Scholar 

  • Keever, C. 1973. Distribution of major forest species in southeastern Pennsylvania. Ecol. Monogr.43: 303–327.

    Google Scholar 

  • Kellman, M. 1979. Soil enrichment by Neotropical savanna trees. J. Ecol.67: 565–577.

    CAS  Google Scholar 

  • Kenworthy, W. J., C. Currin &G. Thayer. 1987. The abundance, biomass and acetylene reduction activity of bacteria associated to decomposing rhizomes of two seagrasses,Zostera marina andThalassia testudinum. Aquatic Bot.27: 97–119.

    CAS  Google Scholar 

  • Killingbeck, K. T. &S. A. Costigan 1988. Element resorption in a guild of understory shrub species: Niche differentiation and resorption threshold. Oikos53: 366–374.

    CAS  Google Scholar 

  • Knapp, A. K. &T. R. Seastedt 1986. Detritus accumulation limits productivity of tallgrass prairie. BioScience36: 622–668.

    Google Scholar 

  • Koroleff, A. 1954. Leaf litter as a killer. J. Forestry52: 178–182.

    Google Scholar 

  • Kozlowski, T. T. &C. E. Ahlgren. 1974. Fire and ecosystems. Academic Press, New York.

    Google Scholar 

  • Kurihara, Y. &J. Kikkawa. 1986. Trophic relations of decomposers. Pages 127–160in J. Kikkawa & D. J. Anderson (eds.), Community ecology. Patterns and processes. Blackwell, New York.

    Google Scholar 

  • Larson, F. &W. Whitman 1942. A comparison of used and unused grassland mesas in the badlands of South Dakota. Ecology23: 438–445.

    Google Scholar 

  • Lee, K. E. 1985. Earthworms. Their ecology and relationship with soil and land use. Academic Press, New York.

    Google Scholar 

  • Mack, R. N. 1984. Invaders at home range. Nat. Hist.93: 40–47.

    Google Scholar 

  • — &D. A. Pyke 1984. The demographyof Bromus tectorum: The role of microclimate, grazing and disease. J. Ecol.72: 731–749.

    Google Scholar 

  • MacMahon, J. A. &F. H. Wagner 1985. The Mojave, Sonora and Chihuahuan deserts of North America. Pages 105–202in M. Evenari, I. Noy-Meir & D. W. Woodall (eds.), Hot deserts and shrublands. Elsevier, New York.

    Google Scholar 

  • Madge, D. S. 1965. Leaf fall and litter disappearance in tropical forests. Pedobiologia5: 273–288.

    Google Scholar 

  • Marks, P. L. 1983. On the origin of the field plants of the northeastern United States. Amer. Nat.122: 210–228.

    Google Scholar 

  • McCarthy, B. C. &J. M. Facelli. 1990. Microdisturbances in oldfields and forests: Implications for woody seedling establishment. Oikos58: 27–33.

    Google Scholar 

  • — &W. A. Wistendahl. 1988. Hickory (Carya spp.) distribution and replacement in a second-growth oak hickory forest of southeastern Ohio. Amer. Midl. Nat.119: 156–164.

    Google Scholar 

  • McClaugherty, C. A. &B. Berg. 1987. Cellulose, lignin and nitrogen concentrations as regulating factors in late stages of forest litter decomposition. Pedobiologia30: 101–112.

    CAS  Google Scholar 

  • —,J. Pastor, J. D. Aber &J. M. Melillo. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology66: 259–265.

    Google Scholar 

  • McGinnies, J. 1987. Effects of hay and straw mulches on the establishment of seeded grasses and legumes on rangeland and a coal strip mine. J. Range Managern.40: 119–121.

    Google Scholar 

  • McKinney, A. L. 1929. Effect of forest litter on soil temperature and soil freezing in autumn and winter. Ecology10: 312–321.

    Google Scholar 

  • Meentemeyer, V. 1978. Macroclimate and lignin control of litter decomposition rates. Ecology59: 465–472.

    CAS  Google Scholar 

  • —,E. O. Box &R. Thompson. 1982. World patterns and amounts of terrestrial plant litter production. BioScience32: 125–128.

    Google Scholar 

  • Mellinger, M. V. &S. J. McNaughton. 1975. Structure and function of successional vascular plant communities in central New York. Ecol. Monogr.45: 161–182.

    Google Scholar 

  • Monk, C. D. 1966. An ecological significance of evergreeness. Ecology47: 504–505.

    Google Scholar 

  • — &F. C. Gabrielson, Jr. 1985. Effect of shade, litter and root competition on old field vegetation in South Carolina. Bull. Torrey Bot. Club112: 383–392.

    Google Scholar 

  • Montana, C., E. Ezcurra, A. Camillo &J. P. Delhome. 1988. Decomposition of litter in grasslands—Arid and non arid environments. J. Arid Environ.14: 55–60.

    Google Scholar 

  • Mooney, H. A. &D. J. Parson 1973. Structure and function of the California Chaparral. An example from San Dimas. Pages 83–112in F. di Castri & H. A. Mooney (eds.), Mediterranean type ecosystems. Origin and structure. Springer, New York.

    Google Scholar 

  • Moorhead, D. L. &J. F. Reynolds. 1989. Mechanisms of surface litter mass loss in the northern Chihuahuan desert: A reinterpretation. J. Arid Environ.16: 157–163.

    Google Scholar 

  • Moral, R. del. 1972. On the variability of chlorogenic acid concentration. Oecologia9: 289–300.

    Google Scholar 

  • Muller, R. N., P. J. Kalisz &T. W. Kimmerer. 1987. Intraspecific variation in production of astringent phenolics over a vegetation-resource availability gradient. Oecologia72: 211–215.

    Google Scholar 

  • Mutch, R. W. 1970. Wildland fires and ecosytems-A hypothesis. Ecology51: 1046–1051.

    Google Scholar 

  • Noy-Meir, I. 1985. Desert ecosystem structure and function. Pages 93–104in M. Evenari, I. Noy-Meir & D. W. Woodall (eds.), Hot deserts and shrublands. Elsevier, New York.

    Google Scholar 

  • Odum, E. P. 1960. Organic production and turnover in old field succession. Ecology41: 34–49.

    Google Scholar 

  • — 1969. The strategy of ecosystem development. Science164: 262–270.

    PubMed  CAS  Google Scholar 

  • Olson, J. S. 1963. Energy storage and the balance of production and decomposition in ecological systems. Ecology44: 323–331.

    Google Scholar 

  • Orndorff, K. A. &G. E. Lang. 1981. Leaf litter redistribution in a West Virginia hardwood forest. J. Ecol.69: 225–235.

    Google Scholar 

  • Otto, C. &L. M. Nilsson. 1981. Why do beech and oak trees retain leaves until spring? Oikos27: 387–390.

    Google Scholar 

  • Owen, D. F. 1978. The effect of a consumer,Phytomiza ilicis, on seasonal leaf fall in the holly,Ilex aquifolium. Oikos31: 268–271.

    Google Scholar 

  • — &R. G. Wiegert. 1976. Do consumers maximize plant fitness? Oikos27: 488–492.

    Google Scholar 

  • Pastor, J., M. A. Stillwell &D. Tilman. 1987. Little bluestem litter dynamics in Minnesota oldfields. Oecologia72: 327–330.

    Google Scholar 

  • Penfound, W. T. 1964. Effect of denudation on the productivity of grasslands. Ecology45: 838–845.

    Google Scholar 

  • Perino, J. V. &P. G. Risser. 1972. Some aspects of structure and function in Oklahoma oldfield succession. Bull. Torrey Bot. Club99: 233–239.

    Google Scholar 

  • Persson, S., N. Malmer &B. Wallén. 1987. Leaf litter fall and soil acidity during half a century of secondary succession in a temperate deciduous forest. Vegetatio73: 31–45.

    Google Scholar 

  • Peterson, C. H. 1984. Does a rigorous criterion for environmental identity preclude the existence of multiple stable points? Amer. Nat.124: 127–133.

    Google Scholar 

  • Pickett, S. T. A., S. L. Collins &J. J. Armesto. 1987. Models, mechanisms and pathways of succession. Bot. Rev.53: 335–371.

    Google Scholar 

  • Polunin, N. V. C. 1984. The decomposition of emergent macrophytes in fresh water. Adv. Ecol. Res.14: 115–166.

    Google Scholar 

  • Prusienkiewicz, Z. &M. Bigos. 1978. Rhythmicity of accumulation and decomposition of forest litter in three mixed forest stands on the soils with different types of forest floor. Ekol. Polska26: 325–345.

    Google Scholar 

  • Rhoades, D. F. &R. G. Cates. 1976. Towards a general theory of plant antiherbivores chemistry. Rec. Adv. Phytochem.10: 168–213.

    CAS  Google Scholar 

  • Rice, E. L. 1979. Allelopathy. An update. Bot. Rev.45: 15–109.

    CAS  Google Scholar 

  • — &R. L. Parenti. 1978. Causes of decreases in productivity in undisturbed tallgrass prairie. Amer. J. Bot.65: 1091–1097.

    Google Scholar 

  • Richards, B. N. 1987. The microbiology of terrestrial ecosystems. Longman, London.

    Google Scholar 

  • Riechert, S. E. &L. Bishop. 1990. Prey control by an assemblage of generalist predators: Spiders in garden test systems. Ecology71: 1441–1450.

    Google Scholar 

  • Ring, C. B., II,R. A. Nicholson &J. L. Launchbaugh. 1985. Vegetation traits of patch-grazed Rangeland in Western-Central Kansas. J. Range Managern.38: 51–55.

    Google Scholar 

  • Risley, L. S. &D. A. Crossley. 1988. Herbivore-caused greenfall in the southern Appalachians. Ecology69: 1118–1127.

    Google Scholar 

  • Risser, P. G., E. C. Birney, H. D. Blocker, S. W. May, W. J. Parton &J. A. Wiens. 1979. The true prairie ecosystem. Hutchinson Ross Publ. Co., East Stroudsburg, Pennsylvania.

    Google Scholar 

  • Rodell, C. F. 1978. Simulation of grasshopper populations in a grassland ecosystem. Pages 127–154in G. Innis (ed.), Grassland simulation models. Springer, New York.

    Google Scholar 

  • Sala, O. E. &W. K. Lauenroth. 1983. Small rainfall events: An ecological role in semiarid regions. Oecologia53: 301–303.

    Google Scholar 

  • Santos, P. F., N. Z. Elkins, Y. Steinberger &W. G. Whitford. 1984. A comparison of surface and buriedLarrea tridentata leaf litter decomposition in North American hot deserts. Ecology65: 278–284.

    Google Scholar 

  • Scheu, S. 1987. The influence of earthworms (Lumbricidae) on the nitrogen dynamics in the soil litter system of a deciduous forest. Oecologia72: 197–201.

    Google Scholar 

  • Schlatterer, E. L. &E. W. Tisdale. 1969. Effect of litter ofArtemisia, Chrysothamnus andTortula on germination and growth of three perennial grasses. Ecology50: 869–873.

    Google Scholar 

  • Seastedt, T. R. &D. A. Crosley. 1983. Nutrients in forest litter treated with naphthalene and simulated throughfall: A field microcosm study. Soil Biol. Biochem.15: 159–165.

    CAS  Google Scholar 

  • Shaver, G. R. 1983. Mineral nutrition and leaf longevity inLedum palustre. The role of individual nutrients and timing of leaf mortality. Oecologia56: 160–165.

    Google Scholar 

  • Shaw, M. W. 1968. Factors affecting the regeneration of sessile oak (Quercus petrea) in North Wales. II. Acorn losses and germination under field condition. J. Ecol.56: 647–666.

    Google Scholar 

  • Shure, D. J. &M. R. Gottschalk. 1985. Litterfall patterns in a floodplain forest. Amer. Midl. Nat114: 98–111.

    Google Scholar 

  • — &D. L. Phillips. 1987. Litterfall patterns within different sized disturbance patches in a Southern Appalachian Mountain forest. Amer. Midl. Nat.118: 348–357.

    Google Scholar 

  • Siegler, D. &P. W. Price. 1976. Secondary compounds in plants: Primary functions. Amer. Nat.110: 101–105.

    Google Scholar 

  • Simpson, L. A. &F. A. Grumbs. 1986a A system of soil crop management for the wet season production of food crops on a heavy clay soil in Guyana. 1. Effect of mulching and tillage on soil properties and crop yield. Trop. Agric.63: 305–311.

    Google Scholar 

  • ——. 1986b. A system of crop and soil management for the wet season production of food crops on a heavy clay soil in Guyana. 2. Effect of mulching and tillage on germination, growth, nutrient uptake and yield. Trop. Agric.63: 311–315.

    Google Scholar 

  • Small, J. A., M. F. Buell, H. F. Buell &T. G. Siccama. 1971. Old-field succession on the New Jersey Piedmont—The first year. William L. Hutcheson Mem. For. Bull.2: 26–30.

    Google Scholar 

  • Sousa, W. P. &J. H. Connell. 1985. Further comments on the evidence for multiple stable points in natural communities. Amer. Nat.125: 612–615.

    Google Scholar 

  • Spain, A. V. &R. P. Lefevre. 1987. Breakdown of four litters of contrasting quality in a tropical Australian rainforest. J. Appl. Ecol.24: 279–288.

    Google Scholar 

  • Spence, D. H. 1982. The zonation of plants in fresh water lakes. Adv. Ecol. Res.12: 37–125.

    Google Scholar 

  • Sprugel, D. 1984. Diversity, biomass, and nutrient cycling changes during stand development in wave regenerated balsam fir forest. Ecol. Monogr.54: 165–186.

    CAS  Google Scholar 

  • Staaf, H. 1987. Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types. Oecologia.72: 58–64.

    Google Scholar 

  • Stanton, N. L. 1979. Patterns of species diversity in temperate and tropical litter mites. Ecology60: 295–304.

    Google Scholar 

  • Stiling, P. &D. Simberloff. 1989. Leaf abscission. Induced defense against pests or response to damage? Oikos55: 43–49.

    Google Scholar 

  • Srinner, B. R., D. A. Crossley, Jr.,E. P. Odum &R. L. Tood. 1984. Nutrient budget and internal cycling of N, P, K, Ca and Mg in conventional tillage, no tillage and oldfield ecosystems on the Georgia Piedmont. Ecology65: 354–369.

    Google Scholar 

  • Stone, E. C. &R. B. Vasey. 1968. Preservation of coastal redwood on alluvial flats. Science159: 157–161.

    PubMed  Google Scholar 

  • Stowe, L. S. 1979. Allelopathy and its influence on the distribution of plants in an Illinois old-field. J. Ecol.67: 1065–1085.

    CAS  Google Scholar 

  • Strojan, C. L., D. C. Randall &F. B. Turner. 1987. Relationship of leaf litter decomposition rates to rainfall in the Mojave desert. Ecology68: 741–743.

    Google Scholar 

  • Sydes, C. &J. P. Grime 1981a. Effect of tree leaf litter on herbaceous vegetation in the deciduous woodlands. I. Field investigations. J. Ecol.69: 237–248.

    Google Scholar 

  • ——. 1981b. Effects of tree leaf litter on herbaceous vegetation in the deciduous woodlands. II An experimental investigation. J. Ecol.69: 249–262.

    Google Scholar 

  • Szczeponska, W. 1977. The effects of remains of halophytes on the growth ofPhragmites communis Trin. andTypha latifolia L. Ekol. Polska25: 437–446.

    Google Scholar 

  • Tao, D. L., Z. B. Xu &X. Li. 1987. Effect of litter layer on natural regeneration of companion tree species in the Korean pine forest. Env. Exper. Bot.27: 53–66.

    Google Scholar 

  • Terborgh, J. &S. Robinson. 1986. Guilds and their utility in ecology. Pages 65–90in J. Kikkawa & D. J. Anderson (eds.), Community ecology. Patterns and processes. Blackwell, New York.

    Google Scholar 

  • Thompson, K., J. P. Grime &G. Mason. 1977. Seed germination in response to diurnal fluctuations of temperature. Nature267: 147–149.

    PubMed  CAS  Google Scholar 

  • Trèmoliere, M., R. Carbinier, A. Exiger &J. C. Turlot. 1988. Un example d’interaction non competitive entre espèces ligneuses: Le cas du lierre arborescent (Hedera helix L.) dans la forête alluviale. Oecol. Generalis9: 187–209.

    Google Scholar 

  • Uetz, G. W. 1974. A method for measuring habitat space in studies of hardwood forest litter arthopods. Environ. Entomol.3: 313–315.

    Google Scholar 

  • Valk, A. G. van der. 1986. The impact of litter and annual plants on recruitment from the seed bank of a lacustrine wetland. Aquatic Bot.24: 13–26.

    Google Scholar 

  • Váazquez-Yanes, C., A. Orozco-Segovia, E. Rincón, M. E. Sánchez-Coronado, P. Huante, J. R. Toledo &V. L. Barradas. 1990. Light beneath the litter in a tropical forest: Effect on seed germination. Ecology71: 1952–1958.

    Google Scholar 

  • Vitousek, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology65: 285–298.

    CAS  Google Scholar 

  • Wahebh, M. &A. M. Mahasheh. 1985. Some aspects of decomposition of leaf litter of the seagrassHalophila stipulacea from the gulf of Aqaba (Jordan). Aquatic Bot.21: 237–244.

    Google Scholar 

  • Walsh, R. P. D. &P. J. Voight. 1977. Vegetation litter: An underestimated variable in hydrology and geomorphology. J. Biogeogr.4: 253–274.

    Google Scholar 

  • Waring, R. H. &W. H. Schlesinger. 1985. Forest ecosystems. Concepts and management. Academic Press, New York.

    Google Scholar 

  • Warren, A. L. & B. L. Zimmerman. 1987. Ecology, abundance and diversity of litter anurans in the Central Amazon, Brasil. (Abstract.) The Annual Meeting of The Association for Tropical Biology, Columbus, Ohio, USA.

  • Watt, A. S. 1956. Contributions to the ecology of bracken (Pteridium aquilinum). VII. Bracken and litter. 1. The origin of rings. New Phytol.55: 369–388.

    Google Scholar 

  • — 1970. Contribution to the ecology of bracken (Pteridium aquilinum). VII. Bracken and litter. 3. The cycle of change. New Phytol69: 431–449.

    Google Scholar 

  • — 1974. Senescence and rejuvenation in ungrazed chalk grassland (Grassland B) in Breckland: The significance of litter and moles. J. Appl. Ecol.23: 1157–1171.

    Google Scholar 

  • Weaver, J. E. &N. W. Rowland. 1952. Effect of excessive natural mulch on the development, yield, and structure of a native grassland. Bot. Gaz.114: 1–19.

    Google Scholar 

  • Weigert, R. G., D. C. Coleman &E. P. Odum. 1970. Energetics of litter-soil subsystems. Pages 137–148in J. Phillipson (ed.), Methods of study of soil ecology. UNESCO, Paris.

    Google Scholar 

  • Welbank, P. J. 1963. Toxin production during decay ofAgropyron repens (couch grass) and other species. Weed Res.3: 205–214.

    CAS  Google Scholar 

  • Werner, P. A. 1975. The effect of plant litter on germination in teasel,Dipsacus sylvestris. Amer. Midl. Nat.94: 470–476.

    Google Scholar 

  • West, N. E. 1979. Formation, distribution, and function of plant litter in desert ecosystems. Pages 647–659in J. A. Perry & D. W. Goodall (eds.), Arid land ecosystems. Structure, function, and management. IBP vol 16. Cambridge University Press, Cambridge.

    Google Scholar 

  • — 1985. Aboveground litter production of three temperate semidesert shrubs. Amer. Midl. Nat.113: 158–169.

    Google Scholar 

  • Whitford, W. G., V. Meentemeyer, T. R. Seastedt, K. Comack, Jr.,D. A. Crossley, P. Santos, R. L. Todd &J. B. Waide. 1982. Exceptions to the AET model: Deserts and clearcut forest. Ecology62: 275–277.

    Google Scholar 

  • Whittaker, R. H. 1970. Communities and ecosystems. MacMillan, New York.

    Google Scholar 

  • — &G. M. Woodwell. 1969. Structure, production, and diversity of the oak-pine forest at Brookhaven. J. Ecol.57: 157–174.

    Google Scholar 

  • Wiegert, R. G. &F. C. Evans. 1964. Primary production and the disappearance of dead vegetation of an old-field. Ecology45: 49–63.

    Google Scholar 

  • Wiens, J. A. 1973. Interterritorial habitat variation in grasshopper and savanna sparrows. Ecology54: 877–884.

    Google Scholar 

  • Williams, R. J. &D. H. Ashton. 1987. Effect of disturbance and grazing by cattle on the dynamics of heathlands and grasslands communities on the Bogong High Plains, Victoria. Austral. J. Bot.35:413–431.

    Google Scholar 

  • Williamson, G. B. &E. M. Black. 1981. High temperature of forest fires under pines as a selective advantage over oaks. Nature293: 643–644.

    Google Scholar 

  • Willms, W. D. 1988. Response of rough fescue (Festuca scabrella) to light, water, temperature and litter removal, under controlled conditions. Canad. J. Bot.66: 429–434.

    Google Scholar 

  • —,S. Smoliak &A. W. Bailey. 1986. Herbage production following litter removal on Alberta native grasslands. J. Range Managern.39: 536–539.

    Google Scholar 

  • Winn, A. A. 1985. Effects of seed size and microsite on seedling emergenceof Prunella vulgaris in four habitats. J. Ecol.73: 831–840.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facelli, J.M., Pickett, S.T.A. Plant litter: Its dynamics and effects on plant community structure. Bot. Rev 57, 1–32 (1991). https://doi.org/10.1007/BF02858763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858763

Keywords

Navigation