Skip to main content
Log in

Tree Species Diversity Affects Litter Decomposition via Modification of the Microenvironment

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Decomposition is a key determinant of forest functioning, controlling nutrient and carbon cycling. Although litter-mixing effects on decomposition (that is, using mixtures of litter of different species) have been studied extensively, less is known about the indirect effects of modified microenvironments via overstory tree species mixing. To investigate the effects of tree species diversity on decomposition, we installed 384 standardized litterbags, filled with leaf litter of four broadleaved tree species with contrasting litter quality, in a large, 10-year-old tree diversity experiment. To quantify microenvironments, we used microclimate sensors, below-canopy rain gauges and measured soil characteristics. We then analysed indirect tree species diversity effects, that is, tree species richness effects on mass loss rates via tree species-induced alterations in the microclimate, throughfall and soil characteristics. We found that understory microenvironmental conditions indeed affect mass loss rates, with the main drivers differing among incubation stages. Predominantly soil phosphorus, but also vapour pressure deficit and throughfall amounts, was negatively associated with mass loss rates across litter types during the first 2 months of the decomposition process. After 6 months of the decomposition, soil moisture was found to be the key determinant positively affecting mass loss rates. In sum, our research contributes to a better understanding of the determinants of decomposition and shows an important pathway in which tree species diversity affects decomposition, via modified microenvironmental conditions acting via the soil, microclimate and throughfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

Data are made available on Figshare https://doi.org/https://doi.org/10.6084/m9.figshare.24652638.v2 (Zhang 2023).

References

  • Bansal S, Sheley RL, Blank B, Vasquez EA. 2014. Plant litter effects on soil nutrient availability and vegetation dynamics: changes that occur when annual grasses invade shrub-steppe communities. Plant Ecol 215:367–378. https://doi.org/10.1007/s11258-014-0307-1.

    Article  Google Scholar 

  • Bartón K. 2014. MuMIn: Multi-model inference. R Packag version 1100.

  • Blondeel H, Perring MP, Bergès L, Brunet J, Decocq G, Depauw L, Diekmann M, Landuyt D, Liira J, Maes SL, Vanhellemont M, Wulf M, Verheyen K. 2019. Context-dependency of agricultural legacies in temperate forest soils. Ecosystems 22:781–795. https://doi.org/10.1007/s10021-018-0302-9.

    Article  CAS  Google Scholar 

  • Bradford MA, Tordoff GM, Eggers T, Jones TH, Newington JE. 2002. Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99:317–323. https://doi.org/10.1034/j.1600-0706.2002.990212.x.

    Article  ADS  Google Scholar 

  • Cassani MT, Sabatté ML, Riveira Rubín MA, Sfeir AJ, Massobrio MJ. 2021. Litter decomposition by soil fauna: effect of land use in agroecosystems. Heliyon 7:e08127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS. 2019. The global soil community and its influence on biogeochemistry. Science 365:eaav0550. https://doi.org/10.1126/science.aav0550.

    Article  CAS  PubMed  Google Scholar 

  • De Smedt P, Wasof S, Van de Weghe T, Hermy M, Bonte D, Verheyen K. 2018. Macro-detritivore identity and biomass along with moisture availability control forest leaf litter breakdown in a field experiment. Appl Soil Ecol 131:47–54.

    Article  Google Scholar 

  • Depauw L, Perring MP, Landuyt D, Maes SL, Blondeel H, De Lombaerde E, Brūmelis G, Brunet J, Closset-Kopp D, Decocq G, Den Ouden J, Härdtle W, Hédl R, Heinken T, Heinrichs S, Jaroszewicz B, Kopecký M, Liepiņa I, Macek M, Máliš F, Schmidt W, Smart SM, Ujházy K, Wulf M, Verheyen K. 2021. Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests. Appl Veg Sci 24:e12532. https://doi.org/10.1111/avsc.12532.

    Article  Google Scholar 

  • Deutsch ES, Bork EW, Willms WD. 2010. Soil moisture and plant growth responses to litter and defoliation impacts in Parkland grasslands. Agric Ecosyst Environ 135:1–9.

    Article  Google Scholar 

  • Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K, Caliman A, Paquette A, Gutiérrez-Girón A, Humber A, Valdecantos A, Petraglia A, Alexander H, Augustaitis A, Saillard A, Fernández ACR, Sousa AI, Lillebø AI, da Rocha Gripp A, Francez A-J, Fischer A, Bohner A, Malyshev A, Andrić A, Smith A, Stanisci A, Seres A, Schmidt A, Avila A, Probst A, Ouin A, Khuroo AA, Verstraeten A, Palabral-Aguilera AN, Stefanski A, Gaxiola A, Muys B, Bosman B, Ahrends B, Parker B, Sattler B, Yang B, Juráni B, Erschbamer B, Ortiz CER, Christiansen CT, Carol Adair E, Meredieu C, Mony C, Nock CA, Chen C-L, Wang C-P, Baum C, Rixen C, Delire C, Piscart C, Andrews C, Rebmann C, Branquinho C, Polyanskaya D, Delgado DF, Wundram D, Radeideh D, Ordóñez-Regil E, Crawford E, Preda E, Tropina E, Groner E, Lucot E, Hornung E, Gacia E, Lévesque E, Benedito E, Davydov EA, Ampoorter E, Bolzan FP, Varela F, Kristöfel F, Maestre FT, Maunoury-Danger F, Hofhansl F, Kitz F, Sutter F, Cuesta F, de Almeida Lobo F, de Souza FL, Berninger F, Zehetner F, Wohlfahrt G, Vourlitis G, Carreño-Rocabado G, Arena G, Pinha GD, González G, Canut G, Lee H, Verbeeck H, et al. 2018. Early stage litter decomposition across biomes. Sci Total Environ 628:1369–1394.

    Article  ADS  PubMed  Google Scholar 

  • Erisman JW, Draaijers G. 2003. Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation. Environ Pollut 124:379–388.

    Article  CAS  PubMed  Google Scholar 

  • Furey GN, Tilman D. 2021. Plant biodiversity and the regeneration of soil fertility. Proc Natl Acad Sci 118:e2111321118. https://doi.org/10.1073/pnas.2111321118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gartner TB, Cardon ZG. 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246. https://doi.org/10.1111/j.0030-1299.2004.12738.x.

    Article  ADS  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S. 2010. Diversity meets decomposition. Trends Ecol Evol 25:372–380.

    Article  PubMed  Google Scholar 

  • Gilbert J, Gowing D, Wallace H. 2009. Available soil phosphorus in semi-natural grasslands: assessment methods and community tolerances. Biol Conserv 142:1074–1083.

    Article  Google Scholar 

  • Harris RF. 1981. Effect of water potential on microbial growth and activity. Water Potential Relat Soil Microbiol 1(9):23–95. https://doi.org/10.2136/sssaspecpub9.c2.

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. https://doi.org/10.1146/annurev.ecolsys.36.112904.151932.

    Article  Google Scholar 

  • Hou D, Liu C, Qiao X, Guo K. 2020. Asymmetric effects of litter accumulation on soil temperature and dominant plant species in fenced grasslands. Ecosphere 11:e03289. https://doi.org/10.1002/ecs2.3289.

    Article  Google Scholar 

  • Joly FX, Milcu A, Scherer-Lorenzen M, Jean LK, Bussotti F, Dawud SM, Müller S, Pollastrini M, Raulund-Rasmussen K, Vesterdal L, Hättenschwiler S. 2017. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol 214:1281–1293.

    Article  CAS  PubMed  Google Scholar 

  • Jongen R, Hannula SE, De Long JR, Heinen R, Huberty M, Steinauer K, Bezemer TM. 2021. Plant community legacy effects on nutrient cycling, fungal decomposer communities and decomposition in a temperate grassland. Soil Biol Biochem 163:108450.

    Article  CAS  Google Scholar 

  • Keiser AD, Bradford MA. 2017. Climate masks decomposer influence in a cross-site litter decomposition study. Soil Biol Biochem 107:180–187.

    Article  CAS  Google Scholar 

  • Keiser AD, Keiser DA, Strickland MS, Bradford MA. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. J Ecol 102:603–609.

    Article  Google Scholar 

  • Kwon T, Shibata H, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K, Lamarque JF, Hagedorn F, Eisenhauer N. 2021. Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes. Front Forests Global Change. https://doi.org/10.3389/ffgc.2021.678480.

    Article  Google Scholar 

  • Lajtha K, Driscoll CT, Jarrell WM, Elliott ET, Robertson GP, Coleman DC, Bledsoe CS, Sollins P. 1999. Soil phosphorus. Characterization and total element analysis.

  • Lefcheck JS. 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579. https://doi.org/10.1111/2041-210X.12512.

    Article  Google Scholar 

  • Lemmon PE. 1956. A Spherical densiometer for estimating forest overstory density. For Sci 2:314–320. https://doi.org/10.1093/forestscience/2.4.314.

    Article  Google Scholar 

  • Madritch MD, Cardinale BJ. 2007. Impacts of tree species diversity on litter decomposition in northern temperate forests of Wisconsin, USA: a multi-site experiment along a latitudinal gradient. Plant Soil 292:147–159. https://doi.org/10.1007/s11104-007-9209-5.

    Article  CAS  Google Scholar 

  • Manzoni S, Schimel JP, Porporato A. 2012. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93:930–938. https://doi.org/10.1890/11-0026.1.

    Article  PubMed  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD, Melillo JM. 1985. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66:266–275. https://doi.org/10.2307/1941327.

    Article  Google Scholar 

  • Nessel MP, Konnovitch T, Romero GQ, González AL. 2021. Nitrogen and phosphorus enrichment cause declines in invertebrate populations: a global meta-analysis. Biol Rev 96:2617–2637. https://doi.org/10.1111/brv.12771.

    Article  CAS  PubMed  Google Scholar 

  • Pretzsch H. 2014. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For Ecol Manage 327:251–264.

    Article  Google Scholar 

  • Sayer EJ. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81:1–31. https://doi.org/10.1017/S1464793105006846.

    Article  PubMed  Google Scholar 

  • Setiawan NN, Vanhellemont M, De Schrijver A, Schelfhout S, Baeten L, Verheyen K. 2016. Mixing effects on litter decomposition rates in a young tree diversity experiment. Acta Oecol 70:79–86.

    Article  ADS  Google Scholar 

  • Smith VC, Bradford MA. 2003. Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time. Appl Soil Ecol 24:197–203.

    Article  Google Scholar 

  • Stark JM, Firestone MK. 1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61:218–221. https://doi.org/10.1128/aem.61.1.218-221.1995.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM, Anderson JM. 1979. Decomposition in terrestrial ecosystems. Univ of California Press

  • Tiunov AV, Scheu S. 2005. Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecol Lett 8:618–625. https://doi.org/10.1111/j.1461-0248.2005.00757.x.

    Article  Google Scholar 

  • Trogisch S, He J-S, Hector A, Scherer-Lorenzen M. 2016. Impact of species diversity, stand age and environmental factors on leaf litter decomposition in subtropical forests in China. Plant Soil 400:337–350. https://doi.org/10.1007/s11104-015-2737-5.

    Article  CAS  Google Scholar 

  • Verheyen K, Ceunen K, Ampoorter E, Baeten L, Bosman B, Branquart E, Carnol M, De Wandeler H, Grégoire JC, Lhoir P, Muys B. 2013. Assessment of the functional role of tree diversity: the multi-site FORBIO experiment. Plant Ecol Evolut 146(1):26–35.

    Article  Google Scholar 

  • Verheyen K, Vanhellemont M, Auge H, Baeten L, Baraloto C, Barsoum N, Bilodeau-Gauthier S, Bruelheide H, Castagneyrol B, Godbold D, Haase J. 2016. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45:29–41.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang B, Blondeel H, Baeten L, Djukic I, De Lombaerde E, Verheyen K. 2019. Direct and understorey-mediated indirect effects of human-induced environmental changes on litter decomposition in temperate forest. Soil Biol Biochem 138:107579.

    Article  CAS  Google Scholar 

  • Wang B, Verheyen K, Baeten L, De Smedt P. 2021. Herb litter mediates tree litter decomposition and soil fauna composition. Soil Biol Biochem 152:108063.

    Article  CAS  Google Scholar 

  • Yue K, De Frenne P, Fornara DA, Van Meerbeek K, Li W, Peng X, Ni X, Peng Y, Wu F, Yang Y, Peñuelas J. 2021. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob Chang Biol. https://doi.org/10.1111/gcb.15644.

    Article  PubMed  Google Scholar 

  • Zhang S, De Frenne P, Landuyt D, Verheyen K. 2022a. Impact of tree species diversity on throughfall deposition in a young temperate forest plantation. Sci Total Environ 842:156947.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zhang S, Landuyt D, Verheyen K, De Frenne P. 2022b. Tree species mixing can amplify microclimate offsets in young forest plantations. J Appl Ecol n/a. https://doi.org/10.1111/1365-2664.14158.

    Article  Google Scholar 

  • Zhang S, Verheyen K, De Frenne P, Landuyt D. 2022c. Tree species mixing affects throughfall in a young temperate forest plantation. Agric Forest Meteorol 15(327):109220.

    Article  Google Scholar 

  • Zhang S. 2023. Tree species diversity affects litter decomposition via modification of the microenvironment. https://figshare.com/articles/journal_contribution/Open_data_for_the_publication_entitled_Tree_species_diversity_affects_litter_decomposition_via_modification_of_the_microenvironment_/24652638

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM, Walker ZI, Smith S (2007) Mixed effects models and extensions in ecology with R. 1st ed. Springer https://doi.org/10.1007/978-0-387-87458-6

Download references

Acknowledgements

DL was supported by a postdoctoral fellowship of the Research Foundation-Flanders (FWO). PDF received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant FORMICA 757833). ED was supported by a doctoral fellowship of the Research Foundation-Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengmin Zhang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 473 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Landuyt, D., Dhiedt, E. et al. Tree Species Diversity Affects Litter Decomposition via Modification of the Microenvironment. Ecosystems (2024). https://doi.org/10.1007/s10021-024-00903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10021-024-00903-2

Keywords

Navigation