Skip to main content
Log in

Comparison of the uptake and distribution of chromate in rats and mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate species differences in tissue accumulation of chromium. Rats and mice were orally exposed to Cr(VI) (potassium chromate) via drinking water (8 mg/d/kg body wt for 4 or 8 wk) or by ip injection (0.3 and 0.8 mg/d/kg, for 4 or 14 d). Chromium concentrations were measured by atomic absorption spectrophotometry, and tissues were compared for exposure route and species differences. After oral exposure, irrespective of treatment duration, liver concentrations of chromium were three to four times higher in mice than rats, whereas kidney concentrations were about 50% lower. However, after ip injection, kidney and blood concentrations in rats were two- and four-fold, higher, respectively. Both rats and mice showed high values of Cr concentration in the bone. After single ip injection of Na2 51CrO4; Cr concentrations were higher in the blood of rats than mice both after 24 and 72 h. Red blood cell concentrations of Cr were also greater in rats than mice by approximately threefold, whereas white blood cell Cr concentrations were higher in mice than rats. There was also a twofold greater binding of Cr/μmol of hemoglobin in rats compared to mice. These data indicate that species differences exist for Cr metabolism and that they differ with respect to the route of exposure. These results may be owing to species differences in the reduction of Cr and different binding of Cr to hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Leonard and R. R. Lauwerys,Mutat. Res. 76, 227–239 (1980).

    PubMed  CAS  Google Scholar 

  2. M. Cohen, D. M. Latta, T. P. Coogan and M. Costa,Biological Effects of Heavy Metals, vol. 2, Mechanism of Metal Carcinogenesis, F. Foulkes, ed., CRC Press, Boca Raton, FL, 1990, pp. 19–75.

    Google Scholar 

  3. S. Kitagawa, H. Seki, F. Kametami, and H. Skurai,Chem.-Biol. Interact. 40, 265–274 (1982).

    Article  PubMed  CAS  Google Scholar 

  4. A. Kortenkamp, D. Beyersmann, and P. O'Brien,Toxicol. Environ. Chem. 14, 23–32 (1987).

    CAS  Google Scholar 

  5. J. Aiyar, K. M. Borges, R. A. Floyd, and K. E. Wetterhahn,Toxicol. Environ. Chem. 22, 135–148 (1989).

    CAS  Google Scholar 

  6. P. H. Connett and K. E. Wetterhahn,Struct. Bond. 54, 93–124 (1983).

    CAS  Google Scholar 

  7. P. Arslan, M. Beltrame, and A. Tomasi,Biochim. Biophys. Acta 931, 10–15 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. G. J. Hughes, C. De Jong, R. W. Fischer, K. H. Winterhalter, and K. J. Wilson,Biochem. J. 199, 61–67 (1981).

    PubMed  CAS  Google Scholar 

  9. H. U. Wolf, W. Land, and R. Zander,Clin. Chim. Acta 136, 95–104 (1984).

    Article  PubMed  CAS  Google Scholar 

  10. C. J. P. Eriksson, H. W. Sippel, and O. A. Forsander,FEBS Lett. 75, 205–208 (1977).

    Article  PubMed  CAS  Google Scholar 

  11. N. S. Kosower, E. M. Kosower, and R. L. Koppel,Eur. J. Biochem. 77, 529–534 (1977).

    Article  PubMed  CAS  Google Scholar 

  12. S. J. Gray and K. Sterling,J. Clin. Invest. 29, 1604–1613 (1950).

    Article  PubMed  CAS  Google Scholar 

  13. B. Buttner and D. Beyersmann,Xenobiotica 15, 735–741 (1985).

    PubMed  CAS  Google Scholar 

  14. H. J. Wiegand, H. Ottenwalder, and H. M. Bolt,Arch. Toxicol. 57, 31–34 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. T. P. Coogan, K. S. Squibb, J. Motz, P. L. Kinney, and M. Costa,Toxicol. Appl. Pharmacol. 108, 157–166 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. R. D. MacKenzie, R. A. Anwar, R. U. Beyerrum, and C. A. Hoppert,Arch. Biochem. Biophys. 79, 200–205 (1959).

    Article  CAS  Google Scholar 

  17. A. Mutti, A. Cavatorta, L. Borghi, M. Canali, C. Giaroli, and I. Franchini,Med. Lavoro 3, 171–179 (1979).

    Google Scholar 

  18. S. Yamaguchi, K. Sano, and N. Shimojo,Ind. Health 21, 25–34 (1983).

    PubMed  CAS  Google Scholar 

  19. Y. Sayato, K. Nakamuto, S. Matsui, and M. Ando,J. Pharm. Dyn. 3, 17–23 (1980).

    CAS  Google Scholar 

  20. Y. Suzuki and K. Fukuda,Arch Toxicol. 64, 169–176 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. H. Weber,J. Toxicol. Environ. Health 11, 749–764 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. K. S. Squibb, S. Cosentino, M. Costa, and C. A. Snyder,The Toxicologist 11, 40 (1991).

    Google Scholar 

  23. R. M. Donaldson and R. F. Barreras,J. Lab. Clin. Med. 68, 484–493 (1966).

    PubMed  CAS  Google Scholar 

  24. S. C. Rossi, N. Gorman, and K. E. Wetterhahn,Chem. Res. Toxicol. 1, 101 (1988).

    Article  PubMed  CAS  Google Scholar 

  25. C. Veillon and Patterson, K. Y., Environmental Carcinogens—Selected Methods of Analysis, Vol. 8, Some Metals: As, Be, Cd, Ni, Pb, Se, Zn. (I. K. O'Neil, P. Schuller and L. Fishbein, Eds.) IARC Scientific Publication No. 71, pp. 433–440. Oxford Univ. Press, New York (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargacin, B., Squibb, K.S., Cosentino, S. et al. Comparison of the uptake and distribution of chromate in rats and mice. Biol Trace Elem Res 36, 307–318 (1993). https://doi.org/10.1007/BF02783964

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783964

Index Entries

Navigation