Skip to main content
Log in

The potential of cell fusion for human therapy

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

As donor organs and tissues for transplantation medicine are scarce, alternative methods for replacing damaged cells or restoring organ function are highly needed. Here, we consider the therapeutic potential of cell fusion. After highlighting the various contexts in which cells are known to fuse during mammalian development, we discuss the implications of the observation that cell fusion can occur with restorative effects following tissue damage or cell transplantation. There are still, however, many challenges facing those who wish to implement cell fusion as a therapeutic tool. These include identifying the best cells to use for reparative fusion, determining the best route of introducing these cells into the desired tissue, discovering methods to increase the incidence of cell fusion, and ensuring the functionality of the resulting fusion products. If these difficulties can be overcome, cell fusion might have therapeutic potential as highlighted by several recent transplantation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refereces

  1. Schleiden M. Beitrage zur Phytogenesis 1838. pp. 137–176.

  2. Schwann T. In Mikroskopische Untersuchungen uber die Ubereinstimmung in der Struckur und dem Wachsten der Thiere und Pflanzen Saunderschen Buchhandlung, Berlin, 1839.

  3. Schwann T. In Microscopical researches into the accordance in the structure and growth of animals and plants. Sydenham Soc, London, 1847.

    Google Scholar 

  4. Chen EH, Olson EN: Science 2005;308:369–373.

    Article  PubMed  CAS  Google Scholar 

  5. Wassarman PM, Jovine L, Qi H, Williams Z, Darie C, Litscher ES. Mol Cell Endocrinol 2005;234:95–103.

    Article  PubMed  CAS  Google Scholar 

  6. Malassine A, Cronier L. Endocrine 2002;19:3–11.

    Article  PubMed  CAS  Google Scholar 

  7. Benirschke K, Kaufmann P. In Pathology of the Human Placenta. Springer, New York, 2000.

    Google Scholar 

  8. Lieber RL. In: Skeletal Muscle Structure and Function. Lipincott Williams & Wilkins, Baltimore, 1992.

    Google Scholar 

  9. Wang X, Willenbring H, Akkari Y, et al. Nature 2003;422:897–901.

    Article  PubMed  CAS  Google Scholar 

  10. Johnson SJ, Mathew J, MacSween RN, Bennett MK, Burt AD. J Clin Pathol 1994;47:1022–1027.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson JM. Curr Opin Hematol 2000;7:40–47.

    Article  PubMed  CAS  Google Scholar 

  12. Kontani K, Rothman JH. Curr Biol 2005;15:R252-R254.

    Article  PubMed  CAS  Google Scholar 

  13. Abmayr SM, Balagopalan L, Galletta BJ, Hong SJ. Int Rev Cytol 2003;225:33–89.

    PubMed  CAS  Google Scholar 

  14. Duelli D, Lazebnik Y. Cancer Cell 2003;3;445–448.

    Article  PubMed  CAS  Google Scholar 

  15. Ogle BM, Cascalho M, Platt JL. Nat Rev Mol Cell Biol 2005; 6:567–575.

    Article  PubMed  CAS  Google Scholar 

  16. Chen MS, Tung KS, Coonrod SA, et al. Proc Natl Acad Sci USA 1996;96:11,830–11,835.

    Google Scholar 

  17. Kaji K, Oda S, Shikano T, et al. Nat Genet 2000;24:279–282.

    Article  PubMed  CAS  Google Scholar 

  18. Yagi M, Miyamoto T, Sawatani Y, et al. J Exp Med 2005;202: 345–351.

    Article  PubMed  CAS  Google Scholar 

  19. Horsley V, Pavlath GK. Cells Tissues Organs 2004;176:67–78.

    Article  PubMed  Google Scholar 

  20. Wakelam MJ. Biochem J 1985;228:1–12.

    PubMed  CAS  Google Scholar 

  21. Ohno-Shosaku T, Okada Y. Biochem Biophys Res Commun 1984;120:138–143.

    Article  PubMed  CAS  Google Scholar 

  22. Ohno-Shosaku T, Hama-Inaba H, Okada Y. Cell Struct Funct 1984;9:193–196.

    Article  PubMed  CAS  Google Scholar 

  23. Sullivan S, Waterfall M, Gallagher EJ, McWhir J, Pells S. Methods Mol Biol 2006;325:81–97.

    PubMed  Google Scholar 

  24. Giraudo CG, Hu C, You D, et al. J Cell Biol 2005;170:249–260.

    Article  PubMed  CAS  Google Scholar 

  25. Rash JE, Fambrough D. Dev Biol 1973;30:166–186.

    Article  PubMed  CAS  Google Scholar 

  26. Przybylski RJ, Blumberg JM. Lab Invest 1966;15:836–863.

    PubMed  CAS  Google Scholar 

  27. Lipton BH, Konigsberg IR. J Cell Biol 1972;53:348–364.

    Article  PubMed  CAS  Google Scholar 

  28. Knudsen KA. In Membrane fusion In: Hoekstra D. (ed), Dekker, New York, 1992; pp. 601–626.

    Google Scholar 

  29. Morrison SJ. Curr Biol 2001;11:R7-R9.

    Article  PubMed  CAS  Google Scholar 

  30. Hu E, Tontonoz P, Spiegelman BM. Proc Natl Acad Sci USA 1995; 92:9856–9860.

    Article  PubMed  CAS  Google Scholar 

  31. Shen CN, Slack JM, Tosh D. Nat Cell Biol 2000;2:879–887.

    Article  PubMed  CAS  Google Scholar 

  32. Funderburgh JL, Funderburgh ML, Mann MM, Corpuz L, Roth MR. J Biol Chem 2001;276:44,173–44,178.

    Article  CAS  Google Scholar 

  33. Condorelli G, Borello U, De Angelis L, et al. Proc Natl Acad Sci USA 2001;98:10,733–10,738.

    CAS  Google Scholar 

  34. Ying QL, Nichols J, Evans EP, Smith AG. Nature 2002;416:545–548.

    Article  PubMed  CAS  Google Scholar 

  35. Terada N, Hamazaki T, Oka M, et al. Nature 2002;416:542–545.

    Article  PubMed  CAS  Google Scholar 

  36. Pells S, Di Domenico AI, Gallagher EJ, McWhir J. Cloning Stem Cells 2002;4:331–338.

    Article  PubMed  CAS  Google Scholar 

  37. Gibson AJ, Karasinski J, Relvas S, et al. J Cell Sci 1995;108(Pt 1) 207–214.

    PubMed  CAS  Google Scholar 

  38. Relvas JB, Relvas HA, Relvas KE, Relvas W, Relvas DJ, Relvas WDJW. Basic App, Myol 1997;7:211–219.

    Google Scholar 

  39. Gussoni E, Soneoka Y, Strickland CD, et al. Nature 1999;401390–394.

    PubMed  CAS  Google Scholar 

  40. Bittner RE, Schofer C, Weipoltshammer K, et al. Anat Embryol (Berl) 1999;199:391–396.

    Article  CAS  Google Scholar 

  41. Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM. Dev Biol 2005;279:336–344

    Article  PubMed  CAS  Google Scholar 

  42. Camargo FD, Chambers SM, Goodell MA. Cell Prolif 2004; 37:55–65.

    Article  PubMed  CAS  Google Scholar 

  43. O'Malley K, Scott EW. Exp Hematol 2004;32:131–134.

    Article  PubMed  Google Scholar 

  44. Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM. Proc Natl Acad Sci USA 2003;100:2088–2093.

    Article  PubMed  CAS  Google Scholar 

  45. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Nature 2003;425:968–973.

    Article  PubMed  CAS  Google Scholar 

  46. Vassilopoulos G, Wang PR, Russell DW. Nature 2003;422:901–904.

    Article  PubMed  CAS  Google Scholar 

  47. Gridelli B, Remuzzi G. N Engl J Med 2003;343:404–410.

    Article  Google Scholar 

  48. Kohler G, Milstein C. Nature 1975;256:495–497.

    Article  PubMed  CAS  Google Scholar 

  49. Trefzer U, Herberth G, Wohlan K, et al. Int J Cancer 2004;110: 730–740.

    Article  PubMed  CAS  Google Scholar 

  50. Partridge TA. Gene Ther 2002;9:752–753.

    Article  PubMed  CAS  Google Scholar 

  51. Willenbring H. Br J Surg 2005;92:923–924.

    Article  PubMed  CAS  Google Scholar 

  52. Ferrari G, Cusella-DeAngelis G, Colletta M, et al. Science 1998;279:1528–1530.

    Article  PubMed  CAS  Google Scholar 

  53. Quaini F, Urbanek K, Beltrami AP, et al. N Engl J Med 2002; 346:5–15.

    Article  PubMed  Google Scholar 

  54. Deb A, Wang S, Skelding KA, et al. Circulation 2003:107: 1247–1249.

    Article  PubMed  Google Scholar 

  55. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Science 2002;297:2256–2259.

    Article  PubMed  CAS  Google Scholar 

  56. Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA. Nat Med 2003;9:1520–1527.

    Article  PubMed  CAS  Google Scholar 

  57. Doyonnas R, LaBarge MA, Sacco A, Charlton C, Blau HM. Proc Natl Acad Sci USA 2004;101:13,507–13,512.

    Article  CAS  Google Scholar 

  58. Willenbring H, Bailey AS, Foster M, et al. NatMed 2004;10:744–748.

    CAS  Google Scholar 

  59. Willenbring H, Grompe M. J Assist Reprod Genet 2003;20: 393–394.

    Article  PubMed  Google Scholar 

  60. Boshart M, Nitsch D, Schutz G. Trends Genet 1993;9:240–245.

    Article  PubMed  CAS  Google Scholar 

  61. Matveeva NM, Shilov AG, Kaftanovskaya, EM, et al. Mol Reprod Dev 1998;50:128–138.

    Article  PubMed  CAS  Google Scholar 

  62. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Curr Biol 2001;11:1553–1558.

    Article  PubMed  CAS  Google Scholar 

  63. Kimura H, Tada M, Nakatsuji N, Tada T. Mol Cell Biol 2004; 24:5710–5720.

    Article  PubMed  CAS  Google Scholar 

  64. Tada M, Morizane A, Kimura H, et al. Dev Dyn 2003;227:504–510.

    Article  PubMed  CAS  Google Scholar 

  65. Do JT, Scholer HR. Stem Cells 2004;22:941–949.

    Article  PubMed  CAS  Google Scholar 

  66. Tada M, Tada T, Lefebvre L, Barton SC, Surani MA. EMBO J 1997; 16:6510–6520.

    Article  PubMed  CAS  Google Scholar 

  67. Flasza M, Shering AF, Smith K, et al. Cloning Stem Cells 2003;5:339–354.

    Article  PubMed  CAS  Google Scholar 

  68. Cowan CA, Atienza J, Melton DA, Eggan K. Science 2005; 309:1369–1373.

    Article  PubMed  CAS  Google Scholar 

  69. Sullivan S, Pells S, Gallagher EJ, Hooper M, McWhir J. Cloning Stem Cells 2006;8:175–189.

    Article  Google Scholar 

  70. Takagi N, Yoshida MA, Sugawara O, Sasaki M. Cell 1983;34:1053–1062.

    Article  PubMed  CAS  Google Scholar 

  71. Andrews PW, Goodfellow PN. Somatic Cell Genet 1980;6(2): 271–284.

    Article  PubMed  CAS  Google Scholar 

  72. Khosla S, Dean W, Reik W, Feil R. Hum Reprod Update 2001; 7:419–427.

    Article  PubMed  CAS  Google Scholar 

  73. Yao S, Chen S, Clark J, et al. Proc Natl Acad Sci USA 2006;103: 6907–6912.

    Article  PubMed  CAS  Google Scholar 

  74. Liu Y, Song Z, Zhao Y, et al. Biochem Biophys Res Commun 2006.

  75. Phimister EG. N Engl J Med 2005;353:1646–1647.

    Article  PubMed  CAS  Google Scholar 

  76. Scarbrough PR, Hersh J, Kukolich MK, et al. Am J Med Genet 1984;19:29–37.

    Article  PubMed  CAS  Google Scholar 

  77. Nakamura Y, Takaira M, Sato E, et al. Arch Pathol Lab Med 2003;127:1612–1614.

    PubMed  Google Scholar 

  78. Golbus MS, Bachman R, Wiltse S, Hall BD. J Med Genet 1976; 13:329–332.

    Article  PubMed  CAS  Google Scholar 

  79. Shiono H, Azumi J, Fujiwara M, Yamazaki H, Kikuchi K. Am J Med Genet 1988;29:543–547.

    Article  PubMed  CAS  Google Scholar 

  80. Rizvi AZ, Swain JR, Davies PS, et al. Proc Natl Acad Sci USA 2006;103:6321–6325.

    Article  PubMed  CAS  Google Scholar 

  81. Strelchenko N, Kukharenko V, Shkumatov A, et al. Reprod Biomed Online 2006;12:107–111.

    Article  PubMed  Google Scholar 

  82. Fournier D, Estoup A, Orivel J, et al. Nature 2005;435:1230–1234.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Eggan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, S., Eggan, K. The potential of cell fusion for human therapy. Stem Cell Rev 2, 341–349 (2006). https://doi.org/10.1007/BF02698061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02698061

Index entries

Navigation