Journal of Electronic Materials

, Volume 15, Issue 4, pp 201–203 | Cite as

Giant polarization in high polymers

  • Herbert A. Pohl


In the course of studying the properties of highly conjugated polymers we found that long range orbital delocalization conferred unexpected properties. The presence of giant electronic orbitals made these materials electroactive yet very stable. A new mode of electronic polarizability resulted, a giant nomadic polarization, making these organic polymers among the most polarizable materials ever encountered. In addition, yet other attributes could be found, such as remanent magnetization, or metallic conductivity, or unusual pressure sensitivity. The giant orbital concept opens up new vistas of materials properties. We note that one can tailor giant orbital polymers to produce pure and highly stable super-dielectrics with high dielectric constants, from 6 to 100,000. Such materials will be useful in the electric power control, as in large motor starting capacitors and in power factor correction. They will doubtless also be useful in low visibility coatings, in obscuration, in EMP shielding, in microcircuitry, in transducers, and in parametric circuits. It remains to be proven if this new molecular mode, nomadic polarization, proves superior in energy storage and loss to that of the conventional “dipole orientation” mode. Preliminary results indicate an advantage for the new giant orbital materials.

Key words

superdielectrics electroactive polymers high dielectric constant materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. A. Pohl, J. Polym. Sci. C.17, 187 (1967).Google Scholar
  2. 2.
    J. R. Wyhof and H. A. Pohl,J. Polym. Sci. Part A-28, 1741 (1970).CrossRefGoogle Scholar
  3. 3.
    M. Pollak and H. A. Pohl, J. Chem. Phys.63, 2980 (1975).CrossRefGoogle Scholar
  4. 4.
    H. A. Pohl and M. Pollak, J. Chem. Phys.66, 4031 (1977).CrossRefGoogle Scholar
  5. 5.
    P. S. Vijayakumar and H. A. Pohl, J. Polym. Sci., Phys. Ed.,22, 1439 (1984).CrossRefGoogle Scholar
  6. 6.
    H. A. Pohl, Phil. Mag.26. 593 (1972)Google Scholar
  7. 7.
    H. A. Pohl and J. R. Wyhof, J. Non-Cryst. Solids11,137 (1972).CrossRefGoogle Scholar
  8. 8.
    H. A. Pohl, J. Biol. Physics2, 113 (1974).CrossRefGoogle Scholar
  9. 9.
    J. H. T. Kho and H. A. Pohl, J. Polym. Sci. Part A-1 17, 139 (1969).CrossRefGoogle Scholar
  10. 10.
    J. W. Mason, R. D. Hartman, and H. A. Pohl,J. Polym. Sci.17, 187 (1967).Google Scholar
  11. 11.
    L. C. Dunn, W. T. Ford, N. Hilal, P. S. Vijayakumar, and H. A. Pohl, J. Polym. Sci., Poly. Phys. Ed.22, 439 (1984).CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1986

Authors and Affiliations

  • Herbert A. Pohl
    • 1
  1. 1.National Magnet LaboratoryMassachusetts Institute of TechnologyCambridge

Personalised recommendations