Skip to main content
Log in

Quasi one-dimensional electronic conduction and nomadic polarization in polymers

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The molecular semiconductors exhibit a wide range of electronic properties not necessarily shown by conventional covalent or ionic semiconductors. Study of the conductive organic solids, particularly the polymeric as opposed to the charge-transfer type, is fruitful because of the deeper insights they offer as to carrier birth and transport in systems possessing short range order.

Conduction in the polymeric organic solids is of the hopping type, increasing with frequency of the applied field. As judged from the thermoelectric power, it may be dominated by either holes or electrons, depending upon the chemical makeup. It is not certain from Hall effects studies whether the Hall ‘mobilities’ are normal or suppressed, such as found in amorphous covalent solids. Both the intra- and inter-chain mobilities are frequency dependent.

Polarization in the polymeric organic solids is observed on occasions to become very large. This is due to a unique form of polarizability,nomadic polarization, wherein certain charges are free to roam over large ranges before being blocked. The large dielectric constants observed are temperature, pressure, and frequency dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. S. B. Digby,Proc. Roy. Soc. B,161 (1965) 502–525.

    ADS  Google Scholar 

  2. B. A. Balto, Chap. 4 inOrganic Semiconducting Polymers, ed. J. E. Katon, (M. Dekker, New York, 1968) pp. 199–258.

    Google Scholar 

  3. S. Kanda and H. A. Pohl, Chap. 3 inOrganic Semiconducting Polymers, ed. by J. E. Katon, (Dekker, Inc., New York, 1968) pp. 87–198.

    Google Scholar 

  4. F. Gutmann and L. E. Lyons,Organic Semiconductors, (John Wiley and Sons, Inc., New York, 1967).

    Google Scholar 

  5. A. R. Blythe,Adv. Science, (1971) 371.

  6. H. A. Pohl and J. R. Wyhof,J. Non-Cryst. Sol.,11 (1972) 137.

    Article  Google Scholar 

  7. M. Pollak and T. H. Geballe,Phys. Rev.,122 (1961) 1742.

    Article  ADS  Google Scholar 

  8. N. F. Mott,Festkorperprobleme,9 (1969) 22.

    Google Scholar 

  9. N. F. Mott,Phil. Mag.,19 (1969) 835.

    Google Scholar 

  10. N. F. Mott,ibid.,20 (1969) 163.

    Google Scholar 

  11. P. W. Anderson,Phys. Rev.,109 (1958) 1492.

    ADS  Google Scholar 

  12. J. R. Wyhof, “The Nature of Hyperelectronic Polarization,” Ph.D. Thesis, Oklahoma State University, Stillwater, Oklahoma, U. S. A., (1970).

    Google Scholar 

  13. A. Howie, C. Lima and H. A. Pohl, (1971) private communication.

  14. L. Friedman,Phys. Rev.,140 (1965) 1649.

    Article  ADS  Google Scholar 

  15. B. Rosenberg, “Semiconduction in Proteins,” N. Y. Acad. Sci., (1969).

  16. J. W. Mason, R. D. Hartman and H. A. Pohl,J. Polymer Sci.,17c (1967) 187.

    Google Scholar 

  17. H. A. Pohl and E. H. Engelhardt,J. Phys. Chem.,66 (1962) 2085.

    Google Scholar 

  18. R. D. Hartman and H. A. Pohl,J. Polymer Sci.,A-1,6, (1968) 1135.

    Google Scholar 

  19. J. R. Wyhof and H. A. Pohl,J. Polymer Sci.,A-2,8 (1970) 1741.

    Google Scholar 

  20. H. A. Pohl,J. Polymer Sci.,17c (1967) 13.

    MathSciNet  Google Scholar 

  21. R. D. Hartman, “Hyperelectronic Polarization and Related Electronic Properties of Macromolecular Solids: Organic Semiconductors,” Ph.D. Thesis, Oklahoma State University, Stillwater, Oklahoma, U. S. A., (1968).

    Google Scholar 

  22. H. A. Pohl, Chap. II inOrganic Semiconducting Polymers, ed. by J. E. Katon, (Dekker, Inc., New York, 1968).

    Google Scholar 

  23. R. Rosen and H. A. Pohl,J. Polymer Sci.,A-1,4 (1966) 1135.

    Google Scholar 

  24. H. A. Pohl, A. Rembaum and A. Henry,J. Am. Chem. Soc.,84 (1962) 2699.

    Article  Google Scholar 

  25. V. A. Johnson and K. Lark-Horowitz,Phys. Rev.,92 (1953) 226.

    Article  ADS  Google Scholar 

  26. V. A. Johnson,Prog. in Semiconductors,1 (1956) 63.

    Google Scholar 

  27. H. A. Pohl,Proc. Fourth Conf. on Carbon, ed. by S. Mrozowski, (Pergamon Press, 1960) p. 180.

  28. H. A. Pohl and J. P. Laherrere,Proc. Fourth Conf. on Carbon, ed. by S. Mrozowski, (Pergamon Press, 1960) p. 259.

  29. H. A. Pohl and R. P. Chartoff,J. Polymer Sci.,A-2 (1964) 2787.

    Google Scholar 

  30. H. A. Pohl and D. A. Opp,J. Phys. Chem.,66 (1962) 2121.

    Google Scholar 

  31. S. Tanaka and H. Y. Fan,Phys. Rev.,132 (1963) 1516.

    Article  ADS  Google Scholar 

  32. M. Pollak,Phys. Rev.,133A (1964) 564.

    ADS  Google Scholar 

  33. M. Pollak,ibid.,138A (1965) 1822.

    ADS  Google Scholar 

  34. M. Pollak, Discussions Faraday Soc., No. 50, (1970) p. 12.

    Google Scholar 

  35. M. Pollak,Phil. Mag.,23 (1971) 519.

    Google Scholar 

  36. M. Pollak,J. Non-Cryst. Sol.,8–10 (1972) 486.

    Google Scholar 

  37. A. K. Jonscher,J. Non-Cryst. Sol.,8–10 (1972) 293.

    Google Scholar 

  38. C. Koops,Phys. Rev.,83 (1951) 121.

    Article  ADS  Google Scholar 

  39. R. A. Marcus,J. Chem. Phys.,42 (1965) 2643.

    Google Scholar 

  40. M. Knotek, private communication, (1970).

  41. H. Pellat,Ann. chim. phys.,18 (1899) 150.

    MATH  Google Scholar 

  42. H. Pellat,J. Phys.,9 (1900) 313.

    MATH  Google Scholar 

  43. P. Debye,Phys. Zeits.,13 (1912) 97.

    MATH  Google Scholar 

  44. P. Debye,Polar Molecules, (Chemical Catalog Co., New York, 1929).

    Google Scholar 

  45. H. Frölich,Theory of Dielectrics, (Oxford Press, 1958) Second Edition.

  46. C. J. F. Böttcher,Theory of Electric Polarization (Elsevier Publishing Co., 1952) p. 367, p. 381.

  47. R. M. Fuoss and J. G. Kirkwood,J. Am. Chem. Soc.,63 (1941) 685.

    Google Scholar 

  48. R. H. Cole and K. S. Cole,J. Chem. Phys.,9 (1941) 341.

    Google Scholar 

  49. W. J. DeVos and J. Volger,Physica,34 (1967) 272.

    Google Scholar 

  50. H. Eyring,J. Chem. Phys.,4 (1936) 283.

    Google Scholar 

  51. W. Kauzmann,Rev. Mod. Phys.,14 (1942) 12.

    Article  ADS  Google Scholar 

  52. L. Friedman,J. Non-Cryst. Sol.,6 (1971) 329.

    Article  Google Scholar 

  53. N. F. Mott,Phil. Mag.,6 (1961) 287.

    Google Scholar 

  54. N. F. Mott and W. D. Twose,Phil. Mag.,10 (1961) 107.

    Google Scholar 

  55. A. Miller and E. Abrahams,Phys. Rev.,120 (1960) 745.

    Article  ADS  Google Scholar 

  56. N. F. Mott, Discussions Faraday Soc., No. 50, (1970) p. 7.

    Google Scholar 

  57. M. H. Cohen, H. Fritzsche and S. R. Ovshinsky,Phys. Rev. Lett.,22 (1969) 1065.

    Article  ADS  Google Scholar 

  58. M. H. Cohen,J. Non-Cryst. Sol.,2 (1970) 432.

    Google Scholar 

  59. N. F. Mott and E. A. Davis,Electronic Processes in Non-Crystalline Materials, (Clarendon Press, Oxford, 1971).

    Google Scholar 

  60. A. J. Epstein, S. E. Etemad, A. F. Garitho and A. J. Heeger,Phys. Rev.,B5 (1972) 952.

    ADS  Google Scholar 

  61. A. N. Bloch, R. B. Weisman and C. M. Varma,Phys. Rev. Lett.,28 (1972) 753.

    Article  ADS  Google Scholar 

  62. A. M. Hermann and A. Rembaum,J. Appl. Phys.,37 (1966) 3642.

    Article  Google Scholar 

  63. H. A. Pohl and S. Rosen,Proc. Fifth Conf. on Carbon, Vol. II, ed. by S. Mrozowski, (Pergamon Press, 1963) p. 113.

  64. A. Epstein and B. S. Wildi,J. Chem. Phys.,32 (1960) 324.

    Article  Google Scholar 

  65. E. I. Balabanov, E. L. Frankevich and L. G. Cherkashina,Vysokomolek. Soedin,5 (1963) 1684.

    Google Scholar 

  66. A. A. Berlin, L. G. Cherakashina, E. L. Frankevich and E. I. Balabanov,ibid.,6 (1964) 832.

    Google Scholar 

  67. G. H. Heilmeier, G. Warfield and S. E. Harrison,Phys. Rev. Lett.,8 (1962) 309.

    Article  ADS  Google Scholar 

  68. G. Delacote and H. Shott,Phys. Stat. Sol.,2 (1962) 1460.

    Google Scholar 

  69. G. H. Heilmeier and S. E. Harrison,J. Chem. Phys.,132 (1963) 2010.

    Google Scholar 

  70. E. M. Trukan,Fiz. Tverd. Tela.,4 (1962) 3496.

    Google Scholar 

  71. E. M. Trukan,Pribory Tekhn. Eksper.,4 (1965) 198.

    Google Scholar 

  72. E. M. Trukan,Biofizika,11 (1966) 412.

    Google Scholar 

  73. D. D. Eley and R. Pethig, Discussions of Faraday Soc., paper 17, (1971).

  74. R. Pethig and K. Morgan,Phys. Status Sol.,B43 (1971) 119.

    Google Scholar 

  75. P. Fielding and F. Gutmann,J. Chem. Phys.,26 (1957) 411.

    Article  Google Scholar 

  76. F. H. Winslow, W. A. Baker and W. A. Yager,J. Am. Chem. Soc.,77 (1955) 4751.

    Article  Google Scholar 

  77. W. S. Chan and A. K. Johscher,Phys. Stat. Sol.,32 (1969) 749.

    Google Scholar 

  78. R. E. Scarman, “Resistivity of Some Organic Semiconductors as a Function of Frequency and Temperature,” Master's Thesis, Chelsea College, University of London, (1970).

  79. J. Heleskivi, T. Salo and T. Stubb, Valtion Teknillinen Tutkimulaitos, No. 147, Helsinki, (1969).

  80. C. Lemercier, private communication, (1971).

  81. L. K. H. Van Beek,Physica,29 (1963) 161; 1323.

    Google Scholar 

  82. V. H. Schmidt, J. E. Drumheller and F. L. Howell,Phys. Rev.,B4 (1971) 4582.

    ADS  Google Scholar 

  83. J. H. T. Kho and H. A. Pohl,J. Polymer Sci.,A-1,7 (1969) 139.

    Google Scholar 

  84. M. J. Rice and J. Bernasconi,Phys. Lett.,A38, 277.

  85. R. P. Auty and R. H. Cole,J. Chem. Phys.,20 (1952) 1309.

    Article  Google Scholar 

  86. D. D. Eley, R. J. Mayer and R. Pethig,J. Bioenerg.,3 (1972) 271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, H.A. Quasi one-dimensional electronic conduction and nomadic polarization in polymers. J Biol Phys 2, 113–172 (1974). https://doi.org/10.1007/BF02308899

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02308899

Keywords

Navigation