Skip to main content
Log in

Degradation of environmental pollutants byPhanerochaete chrysosporium

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The white rot fungi appear to be unique in their ability to degrade lignin by the secretion of hydrogen peroxide and a family of peroxidases now referred to as lignin peroxidases or simply ligninases. The fact that these enzymes are naturally secreted and seem to be capable of initiating the oxidation of lignin by a free-radical mechanism led to the proposal and demonstration that the white rot fungi are able to degrade a wide variety of normally very recalcitrant environmental pollutants. The mineralization of chemicals byPhanerochaete chrysosporium does seem to be dependent upon the lignin degrading system. Thus it should be possible to at least initiate degradation extracellularly, eliminating the need for absorption of the chemical. The nonspecific nature of the system gives the potential for oxidation of a wide variety of chemicals and even mixtures of chemicals. As the lignin peroxidases are synthesized and secreted in response to nutrient starvation there is no requirement for conditioning of the organism. Mineralization can occur in either a water or soil matrix using very economical agricultural or wood wastes as nutrients. The lignin peroxidases can be purified from the extracellular fluid quite easily by fast protein liquid chromatography. They are somewhat typical peroxidases but also have some unique properties. The oxidation of some xenobiotics has been demonstrated and cooxidation is also a possible mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrawis A, Johnson KA, Tien M (1988) Studies on compound I formation of the lignin peroxidase fromPhanerochaete chrysosporium. J Biol Chem 263 3:1195–1198

    PubMed  CAS  Google Scholar 

  2. Arjmand M, Sandermann H (1985) Mineralization of chloroailine/lignin conjugates and of free chloroanilines by the white rot fungusPhanerochaete chrysosporium. J Agric Food Chem 33:1055–1060

    Article  CAS  Google Scholar 

  3. Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons byPhanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    PubMed  CAS  Google Scholar 

  4. Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by the white rot fungusPhanerochaete chrysosporium. Appl Environ Microbiol 54:1143–1150

    PubMed  CAS  Google Scholar 

  5. Bumpus JA, Mileski G, Brock B, Ashbaugh W, Aust SD (1988) Biological oxidations of organic compounds by enzymes from a white rot fungus. In: Land disposal, remedial action, incineration and treatment of hazardous waste. Proc. of the Fourteenth Annual Research Symposium, May 1988, Cincinnati, OH

  6. Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  PubMed  CAS  Google Scholar 

  7. Chang H-M, Joyce TW, Campbell AG, Gerrard ED, Huynh VB, Kirk TK (1983) Fungal decolorization of bleach plant effluents. In: Hicuchi T, Chang H-M, Kirk TK (eds) Recent advances in lignin biodegradation. No. 9. Uni Publishers, Tokyo, pp 257–268

    Google Scholar 

  8. Crawford R (1981) Lignin biodegradation and transformation, John Wiley, New York

    Google Scholar 

  9. Eaton DC (1985) Mineralization of polychlorinated biphenyls byPhanerochaete chrysosporium: A ligninolytic fungus. Enzyme Microb Technol 7:194–196

    CAS  Google Scholar 

  10. Fenn P, Kirk TK (1979) Ligninolytic system ofPhanerochaete chrysosporium: Inhibition by α-phthalate. Arch Microbiol 123:307–309

    Article  CAS  Google Scholar 

  11. Fernando T, Aust SD, Bumpus JA (1989) Effects of culture parameters on DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] biodegradation byPhanerochaete chrysosporium. Chemosphere 19:1387–1398

    Article  CAS  Google Scholar 

  12. Gold MH, Wariishi H, Valli K (1989) Extracellular perocidosis involved in lignin degradation by the white rot vasidiomycetePhanerochaete chrysosporium. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology. ACS Symposium Series No, 389, pp. 127–140

  13. Haemmerli SD, Leisola MSA, Sanglard D, Fiechter A (1986) Oxidation of benzo(a)pyrene by extracellular ligninases ofPhanerochaete chrysosporium: Veratryl alcohol and stability of ligninase. J Biol Chem 261:6900–6903

    PubMed  CAS  Google Scholar 

  14. Huynh VB, Chang H-M, Joyce TW, Kirk TK (1985) Dechlorination of chloro-organics by a white rot fungus. TAPPIJ 68(7):98–102

    Google Scholar 

  15. Kelley RL, Reddy CA (1986) Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic cultures ofPhanerochaete chrysosporium, Arch Microbiol 144:248–253

    Article  CAS  Google Scholar 

  16. Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production byPhanerochaete chrysosporium. J Bact 169:2195–2201

    PubMed  CAS  Google Scholar 

  17. Kirk TK (1984) Degradation of lignin. In: Gibson DT (ed) Microbial degradation of organic compounds. Dekker, New York, pp. 339–436

    Google Scholar 

  18. Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL (1985) Production of multiple ligninases byPhanerochaete chrysosporium and effect of selected growth conditions and use of a mutant strain. Enzyme Microbial Technol 8:27–32

    Article  Google Scholar 

  19. Kirk TK, Schultz E, Connors WJ, Lorenz CF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism byPhanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

  20. Koenigs JW (1972) Production of extracellular hydrogen peroxide and peroxidase by woodrotting fungi. Phytopath 62:100–110

    Article  CAS  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 277:680–685

    Article  Google Scholar 

  22. Leatham GF, Crawford RL, Kirk TK (1983) Degradation of phenolic compounds and ring cleavage of catechol byPhanerochaete chrysosporium. Appl Environ Microbiol 46:191–197

    PubMed  CAS  Google Scholar 

  23. Mileski GJ, Bumpus JA, Jurek MA, Aust SD (1988) Biodegradation of pentachlorophenol by the white rot fungusPhanerochaete chrysosporium. Appl Environ Microbiol 54 12:2885–2889

    PubMed  CAS  Google Scholar 

  24. Millis CD, Danying C, Stankovich MT, Tien M (1989) Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungusPhanerochaete chrysosporium. Biochemistry 28:8484–8489

    Article  PubMed  CAS  Google Scholar 

  25. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provvenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klek DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  26. Tien M (1987) Properties of ligninases fromPhanerochaete chrysosporium and their possible application. Crit Rev Microbiol 15:141–168

    Article  PubMed  CAS  Google Scholar 

  27. Tien M, Kirk TK (1984) Lignin-degrading enzyme fromPhanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284

    Article  PubMed  CAS  Google Scholar 

  28. Tien M, Kirk TK (1988) Lignin peroxidase ofPhanerochaete chrysosporium. Methods in Enzymol 161:238–249

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aust, S.D. Degradation of environmental pollutants byPhanerochaete chrysosporium . Microb Ecol 20, 197–209 (1990). https://doi.org/10.1007/BF02543877

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02543877

Keywords

Navigation