Skip to main content

Lignin-Degrading Enzymes: Phenoloxidase and Peroxidase

  • Chapter
  • First Online:
Methods to Study Litter Decomposition

Abstract

Lignin is a principal constituent of vascular plants and, after cellulose, the second most abundant naturally occurring compound. Degradation of the lignin molecule is an oxidative process that may extend over long periods. Both fungi and bacteria possess the enzymic equipment for depolymerizing lignin, which includes monooxygenases (phenoloxidases, laccases), dioxygenases, and peroxidases. This chapter describes two related assays to determine potential oxidative enzyme activity associated with decomposing litter. The assays involve a substrate that serves as an electron donor, most commonly L-3,4-dihydroxyphenylalanine (L-DOPA), generating a product that can be quantified spectrophotometrically. For phenoloxidase, plant litter is homogenized and the homogenate is mixed with DOPA and incubated for 60 min before measuring absorbance at 460 nm. Phenol peroxidase activity is estimated by adding hydrogen peroxide to the sample. Several methodological caveats require appropriate controls and attention to reaction kinetics. Standardizing the incubation time, generally the minimum time needed to detect a signal 2–3 times greater than the negative controls, is critical for meaningful comparisons of activities among samples. Typical phenoloxidase and peroxidase activities in wood submerged in streams range from <1 to 40 μmol per gram of organic matter and hour, with mostly somewhat higher rates noted for decomposing leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez, S., & Guerrero, M. C. (2000). Enzymatic activities associated with decomposition of particulate organic matter in two shallow ponds. Soil Biology and Biochemistry, 32, 1941–1951.

    Article  CAS  Google Scholar 

  • Artigas, J., Gaudes, A., Muñoz, I., Romaní, A. M., & Sabater, S. (2011). Fungal and bacterial colonization of submerged leaf litter in a Mediterranean stream. International Review of Hydrobiology, 96, 221–234.

    Article  CAS  Google Scholar 

  • Bach, C. E., Warnock, D. D., Van Horn, D. J., Weintraub, M. N., Sinsabaugh, R. L., Allison, S. D., & German, D. P. (2013). Phenol oxidase and peroxidase activities in relation to substrate, assay conditions and soil type. Soil Biology and Biochemistry, 67, 183–191.

    Article  CAS  Google Scholar 

  • Baldrian, P. (2006). Fungal laccases – Occurrence and properties. FEMS Microbiology Reviews, 30, 215–242.

    Article  CAS  Google Scholar 

  • Freeman, C., Ostle, N., & Kang, H. (2001). An ‘enzymatic latch’ on a global carbon store. Nature, 409, 149.

    Article  CAS  Google Scholar 

  • Gallo, M., Amonette, R., Lauber, C., Sinsabaugh, R. L., & Zak, D. R. (2004). Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microbial Ecology, 48, 218–229.

    Article  CAS  Google Scholar 

  • Harner, M. J., Crenshaw, C. L., Abelho, M., Stursova, M., Follstad Shah, J. J., & Sinsabaugh, R. L. (2009). Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats. Ecological Applications, 19, 1135–1146.

    Article  Google Scholar 

  • Hendel, B. (1999). Der mikrobielleAbbau von Holz und Laub im Breitenbach unter besonderer Berücksichtigung der Bedeutung extrazellulärer Enzyme. Doctoral thesis. University of Giessen, Germany.

    Google Scholar 

  • Hendel, B., & Marxsen, J. (2000). Extracellular enzyme activity associated with degradation of beech wood in a Central European stream. International Review of Hydrobiology, 85, 95–105.

    Article  CAS  Google Scholar 

  • Hoegger, P. J., Kilaru, S., James, T. Y., Thacker, J. R., & Kues, U. (2006). Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS Journal, 273, 2308e2326.

    Google Scholar 

  • Mason, H. S. (1948). The chemistry of melanin: III. Mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase. Journal of Biological Chemistry, 172, 83–99.

    Google Scholar 

  • Münster, U., & De Haan, H. (1998). The role of microbial extracellular enzymes in the transformation of dissolved organic matter in humic waters. In D. O. Hessen & L. J. Tranvik (Eds.), Aquatic humic substances (pp. 199–257). Berlin: Springer.

    Chapter  Google Scholar 

  • Saiya-Cork, K. R., Sinsabaugh, R. L., & Zak, D. R. (2002). Effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 34, 1309–1315.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42, 391–404.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., & Foreman, C. M. (2003). Integrating DOM metabolism and microbial diversity. In S. Findlay & R. L. Sinsabaugh (Eds.), Aquatic ecosystems: The interactivity of dissolved organic matter (pp. 426–454). San Diego: Academic.

    Google Scholar 

  • Sinsabaugh, R. L., & Linkins, A. E. (1990). Enzymic and chemical analysis of particulate organic matter from a boreal river. Freshwater Biology, 23, 301–309.

    Article  CAS  Google Scholar 

  • Sinsabaugh, R. L., Antibus, R. K., Linkins, A. E., McClaugherty, C. A., Rayburn, L., Repert, D., & Weiland, T. (1992). Wood decomposition over a first-order watershed: Mass loss as a function of lignocellulose activity. Soil Biology and Biochemistry, 24, 743–749.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1994). Biochemistry of the formation of humic substances. In F. J. Stevenson (Ed.), Humus chemistry (pp. 188–211). New York: Wiley.

    Google Scholar 

  • Tank, J. L., Webster, J. R., Benfield, E. F., & Sinsabaugh, R. L. (1998). Effect of leaf litter exclusion on microbial enzyme activity associated with wood biofilms in streams. Journal of the North American Benthological Society, 17, 95–103.

    Article  Google Scholar 

  • Waldrop, M. P., McColl, J. G., & Powers, R. F. (2003). Effects of forest postharvest management practices on enzyme activities in decomposing litter. Soil Science Society of America Journal, 67, 1250–1256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Marxsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hendel, B., Sinsabaugh, R.L., Marxsen, J. (2020). Lignin-Degrading Enzymes: Phenoloxidase and Peroxidase. In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_46

Download citation

Publish with us

Policies and ethics