Skip to main content
Log in

Morphological, physiological and molecular genetic characterization ofArabidopsis himalaica, with reference toA. thaliana

  • Original Articles
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Arabidopsis himalaica (Edgeworth) O.E. Schulz, a poorly characterized species typical of HimalayanArabidopsis, was analyzed in terms of its morphology, physiology, chromosome number and molecular genetics, in comparison withA. thaliana which is the standard species in the genusArabidopsis. From view point of developmental genetics, several features which are specific toA. himalaica seem not to be derived by single-gene mutations inA. thaliana. Phylogenetic analyses based onrbcL sequences suggested that genusArabidopsis is not monophyletic. The detailed characterization ofA. himalaica should provide clues to understand the trait of evolution of particular features of Himalayan species ofArabidopsis and their genetic basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Shehbaz, I.A. 1994.Erysimum hedgeanum (Brassicaceae), a new name replacingArabidopsis erysimoides. Novon4: 1–2.

    Article  Google Scholar 

  • Al-Shehbaz, I.A. andO'Kane, S.L. 1995. Placement ofArabidopsis parvula inThellugiella (Brassicaceae). Novon5: 309–310.

    Article  Google Scholar 

  • Al-Shehbaz, I.A. and O'Kane, S.L. Arabidopsis gamosepala andA. tuemurica transferred toNeotorularia. Novon (in press).

  • Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M., andSmyth, D.R. 1993. Control of flower development inArabidopsis thaliana byAPETALA1 and interacting genes. Development119: 721–743.

    CAS  Google Scholar 

  • Chang, C., Bowman, J.L., DeJohn, A.W., Lander, E.S. andMeyerowitz, E.M. 1988. Restriction fragment length polymorphism linkage map forArabidopsis thaliana. Proc. Natl. Acad. Sci. USA85: 6856–6860.

    Article  PubMed  CAS  Google Scholar 

  • Chase, M.W., D.E. Soltis, R.G. Olmstead, D. Morgan, D.H. Les, B.D. Mishler, M.R. Duvall, R.A. Price, H.G. Hills, Y.-L. Qiu, K.A. Kron, J.H. Retting, E. Conti, J.D. Palmer, J.R. Manhart, K.J. Sytsma, H.J. Michaels, W.J. Kress, K.G. Karol, W.D. Clark, M. Hedrén, B.S. gaut, R.K. Jansen, K.-J. Kim, C.F. Wimpee, J.F. Smith, G.R. Furnier, S.H. Strauss, Q.-Y. Xiang, G.M. Plunkett, P.S. Soltis, S.M. Swensen, S.E. Williams, P.A. Gadek, C.J. Quinn, L.E. Eguiarte, E. Golenberg, G.H. Learn, Jr., S.W. Graham, S.C.H. Barrett, S. Dayanandan andV.A. Albert 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard.80: 528–580.

    Article  Google Scholar 

  • Conti, E., Fischbach, A. andSytsma, K.J. 1993. Tribal relationships in Onageraceae: Implications from rbcL sequence data. Ann. Missouri Bot. Gard.80: 672–685.

    Article  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum liklihood approach. J. Mol. Evol.17: 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution39: 783–791.

    Article  Google Scholar 

  • Gielly, L. andTaberlet, P. 1994. The use of chloroplast DNA to resolve plant phylogenies: Noncording versus rbcL sequences. Mol. Biol. Evol.11: 769–777.

    PubMed  CAS  Google Scholar 

  • Higgins, D.G., Bleasby, A.J. andFuchs, R. 1992. CLUSTAL V: improved software for multiple sequence alignment. Compt. Appl. Biosci.8: 189–191.

    CAS  Google Scholar 

  • Hülskamp, M., Miséra, S. andJürgens, G. 1994. Genetic dissection of trichome cell development inArabidopsis. Cell76: 555–566.

    Article  PubMed  Google Scholar 

  • Johnson, L.A. andSoltis, D.E. 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann. Missouri Bot. Gard.82: 149–175.

    Article  Google Scholar 

  • Kawazu, T., Kawano, S. andKuroiwa, T. 1995. Distribution of the Golgi apparatus in the mitosis of cultured tobacco cells as revealed by DiOC6 fluorescence microscopy. Protoplasma186: 183–192.

    Article  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa, T., Miyamura, S., Kawano, S., Hizume, M., Toh-e, A., Miyakawa, I. andSando, N. 1986. Cytological characterization of NOR in the bivalent ofSaccharomyces cerevisiae. Exp. Cell. Res.165: 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C.M., Liu, Z.-Q. andKung, S.D. 1986. Nicotiana chloroplast genome, X: Correlation between the DNA sequences and the isoelectric focusing patterns of the LS of Rubisco. Pl. Mol. biol.6: 81–87.

    Article  CAS  Google Scholar 

  • Lloyd, A.M., Walbot, V. andDavis, R.W. 1992.Arabidopsis andNicotiana anthocyanin production activated by maize regulatorsR andC1. Science258: 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E.M. andPruitt, R.E. 1985.Arabidopsis thaliana and plant molecular genetics. Science229: 1214–1218.

    Article  CAS  PubMed  Google Scholar 

  • Mummenhoff, K. andKoch, M. 1994. Chloroplast DNA restriction site variation and phylogenetic relationships in the genus Thlaspi sensu lato (Brassicaceae). Syst. Bot.19: 73–88.

    Article  Google Scholar 

  • Mummenhoff, K., Kuhnt, E., Koch, M. andZunk, K. 1995. Systematic impliations of chloroplast DNA variation in Lepidium section Carfamon, Lepiocardamon and Lepia (Brassicaceae). Pl. Syst. Evol.196: 75–88.

    Article  CAS  Google Scholar 

  • Naqshi, A.R. andJaveid, G.N. 1985. The genusArabidopsis Heynh. (Brassicaceae) in J & K state. Econ. Tax. Bot.7: 617–627.

    Google Scholar 

  • Nei, M. andLi, W.-H. 1979. Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc. Natl. Acad. Sci. USA76: 5269–5273.

    Article  PubMed  CAS  Google Scholar 

  • O'Kane, S.L., Al-Shehbaz, I.A. andSchaal, B.A. 1995. Phylogenetics ofarabidopsis: scope and content based on DNA sequences of nuclear rDNA internal transcribed spacers. Amer. J. Bot.82, suppl.: 154.

    Google Scholar 

  • O'Kane, S.L., Schaal, B.A. and Al-Shehbaz, I.A. The origins ofArabidopsis suecica (Brassicaceae), as indicated by nuclear rDNA sequences, and implications for concerned evolution. Syst. Bot. (in press).

  • Olmstead, R., Michaels, H.J., Scott, K.M. andPalmer, J.D. 1992. Monophyly of the asteridae and identification of their major lineages inferred from DNA sequences orrbcL. Ann. Missouri. Bot. Gard.79: 249–265.

    Article  Google Scholar 

  • Olmstead, R.G. andReeves, P.A. 1995. Evidence for the polyphyly of the Scrophlariaceae based on chloroplast rbcL and ndhF sequences. Ann. Missouri Bot. Gard.82: 176–193.

    Article  Google Scholar 

  • Olmstead, R.G. andSweere, J.A. 1994. Combining data in phylogenetic systematics: An empirical approach using three molecular data sets in the Solanaceae. Syst. Biol.43: 467–481.

    Article  Google Scholar 

  • Olsen, G. J., Matsuda, H., Hagstrom, R., andOverbeek, R. 1994. fastDNAml: a tool for construcion of phylogenetic trees of DNA sequences using maximum liklihood. CABIOS10: 41–48.

    PubMed  CAS  Google Scholar 

  • Palmer, J.D., Shields, C.R., Cohen, D.B. andOrton, T.J. 1983. Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor. Appl. Genet.65: 181–189.

    Article  CAS  Google Scholar 

  • Price, R.A., Al-Shehbaz, I.A. andPalmer, J.D. 1995. Systematic relationships ofArabidopsis a molecular and morphological perspective.In C. Sommerville and E. Meyerowitz eds.,Arabidopsis. New York, Cold Spring Harbor Press. pp. 7–19.

    Google Scholar 

  • Rédei, G.P. 1970.Arabidopsis thaliana (L.) Heynh.: a review of the genetics and biology. Bib. Genet.20: 1–151.

    Google Scholar 

  • Rodman, J. 1991. A taxonomic analysis of glucosinolate-producing plants, Part 2: Cladistics. Syst. Bot.16: 619–629.

    Article  Google Scholar 

  • Rodman, J., Price, R.A., Karol, K., Conti, E., Sytsma, K.J. andPalmer, J.D. 1993. Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants. Ann. Missouri Bot. Gard.80: 686–699.

    Article  Google Scholar 

  • Sarich, V.M. andWilson, A.C. 1973. Generalion time and genomic evolution in primates. Science179: 1144–1147.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E.A. andHaughn, G.W. 1991.LEAFY, a homeotic gene that regulates inflorescence development inArabidopsis. Plant Cell3: 771–781.

    Article  PubMed  Google Scholar 

  • Schultz, E.A. andHaughn, G.W. 1993. Genetic analysis of the floral initiation process (FLIP) inArabidopsis. Development119: 745–765.

    CAS  Google Scholar 

  • Schulz, O.E. 1924.Arabidopsis.In A. Engler, ed., Pflanzenreich4 (105): 268–285. Leipzig: Verlag von Wilhelm Engelmann.

    Google Scholar 

  • Shannon, S. andMeeks-Wagner 1993. Genetic interactions that regulate inflorescence development inArabidopsis. Plant Cell5: 639–655.

    Article  PubMed  Google Scholar 

  • Swofford, D.L. 1991. PAUP: Phylogenetic Analysis Using Parsimony, version 3.1.1. Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Tai-yien, C., Rong-lin, G., Yong-zhen, L., Lian-li, L., Kechien, K. and Zheng-xi, A. 1987.Arabidopsis. In C, Tai-yien, ed., Flora Reipublicae Popularis Sinicae.33: 280–288.

  • Tsukaya, H., Inaba-Higano, K., andKomeda, Y. 1995. Phenotypic characterization and molecular mapping of anacaulis2 mutant ofArabidopsis thaliana with flower stalks of much reduced length. Plant Cell Physiol.36: 239–246.

    CAS  Google Scholar 

  • Tsukaya, H., Naito, S., Rédei, G.P. andKomeda, Y. 1993. A new class of mutations inArabidopsis thaliana, acaulis1, affecting the development of both inflorescences and leaves. Development118: 751–764.

    CAS  Google Scholar 

  • Tsukaya, T., Ohshima, S. Naito, M., Chino, andKomeda, Y. 1991. Sugar-dependent expression of theCHS-A gene for chalcone synthase fromPetunia in transgenicArabidopsis. Plant Physiology97: 1414–1421.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.-I. andLi, W.-H. 1985. Evidence for higher rate of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. USA82: 1741–1745.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukaya, H., Yokoyama, J., Ikeda, H. et al. Morphological, physiological and molecular genetic characterization ofArabidopsis himalaica, with reference toA. thaliana . J. Plant Res. 110, 15–23 (1997). https://doi.org/10.1007/BF02506838

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02506838

Key words

Navigation