Skip to main content
Log in

The dynamical theory of coevolution: a derivation from stochastic ecological processes

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we develop a dynamical theory of coevolution in ecological communities. The derivation explicitly accounts for the stochastic components of evolutionary change and is based on ecological processes at the level of the individual. We show that the coevolutionary dynamic can be envisaged as a directed random walk in the community's trait space. A quantitative description of this stochastic process in terms of a master equation is derived. By determining the first jump moment of this process we abstract the dynamic of the mean evolutionary path. To first order the resulting equation coincides with a dynamic that has frequently been assumed in evolutionary game theory. Apart from recovering this canonical equation we systematically establish the underlying assumptions. We provide higher order corrections and show that these can give rise to new, unexpected evolutionary effects including shifting evolutionary isoclines and evolutionary slowing down of mean paths as they approach evolutionary equilibria. Extensions of the derivation to more general ecological settings are discussed. In particular we allow for multi-trait coevolution and analyze coevolution under nonequilibrium population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P. A.: Adaptive responses of predators to prey and prey to predators: the failure of the arms-race analogy. Evolution40, 1229–1247 (1986)

    Article  Google Scholar 

  • Abrams, P. A., Matsuda, H., Harada, Y.: Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol. Ecol.7, 465–487 (1993)

    Article  Google Scholar 

  • Bailey, N. T. J.: The elements of stochastic processes. New York: John Wiley and Sons 1964

    MATH  Google Scholar 

  • Baker, G. L., Gollub, J. P.: Chaotic dynamics: an introduction. Cambridge: Cambridge University Press 1990

    MATH  Google Scholar 

  • Brown, J. S., Vincent, T. L.: Coevolution as an evolutionary game. Evolution41, 66–79 (1987a)

    Article  Google Scholar 

  • Brown, J. S., Vincent, T. L.: Predator-prey coevolution as an evolutionary game. In: Cohen, Y. (ed.) Applications of Control Theory in Ecology, pp. 83–101. Lecture Notes in Biomathematics 73. Berlin: Springer Verlag 1987b

    Google Scholar 

  • Brown, J. S., Vincent, T. L.: Organization of predator-prey communities as an evolutionary game. Evolution46, 1269–1283 (1992)

    Article  Google Scholar 

  • Christiansen, F. B.: On conditions for evolutionary stability for a continuously varying character. Amer. Natur.138, 37–50 (1991)

    Article  Google Scholar 

  • Dawkins, R.: The selfish gene. Oxford: Oxford University Press 1976

    Google Scholar 

  • Dawkins, R., Krebs, J. R.: Arms races between and within species. Proc. Roy. Soc. Lond. B205, 489–511 (1979)

    Article  Google Scholar 

  • Dieckmann, U.: Coevolutionary dynamics of stochastic replicator systems. Jülich Germany: Berichte des Forschungszentrums Jülich (Jül-3018) 1994

    Google Scholar 

  • Dieckmann, U., Marrow, P., Law, R.: Evolutionary cycles in predator-prey interactions: population dynamics and the Red Queen. J. Theor. Biol.176, 91–102 (1995)

    Article  Google Scholar 

  • Ebeling, W., Feistel, R.: Physik der Selbstorganisation und Evolution. Berlin: Akademie-Verlag 1982

    Google Scholar 

  • Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys.57, 617–656 (1985)

    Article  MathSciNet  Google Scholar 

  • Emlen, J. M.: Evolutionary ecology and the optimality assumption. In: Dupre, J. (ed.) The latest on the best, pp. 163–177. Cambridge: MIT Press 1987

    Google Scholar 

  • Eshel, I.: Evolutionary and continuous stability. J. Theor. Biol.103, 99–111 (1983)

    Article  MathSciNet  Google Scholar 

  • Eshel, I., Motro, U.: Kin selection and strong stability of mutual help. Theor. Pop. Biol.19, 420–433 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Falconer, R. A.: Introduction to quantitative genetics. 3rd Edition. Harlow: Longman 1989

    Google Scholar 

  • Fisher, R. A.: The genetical theory of natural selection. New York: Dover Publications 1958

    Google Scholar 

  • Futuyma, D. J., Slatkin, M.: Introduction. In: Futuyma, D. J., Slatkin, M. (eds.) Coevolution, pp. 1–13. Sanderland Massachusetts: Sinauer Associates 1983

    Google Scholar 

  • Gillespie, D. T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys.22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  • Goel, N. S., Richter-Dyn, N., Stochastic models in biology. New York: Academic Press 1974

    Google Scholar 

  • Hofbauer, J., Sigmund, K.: Theory of evolution and dynamical systems. New York: Cambridge University Press 1988

    MATH  Google Scholar 

  • Hofbauer, J., Sigmund, K.: Adaptive dynamics and evolutionary stability. Appl. Math. Lett.3, 75–79 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Iwasa, Y., Pomiankowski, A., Nee, S.: The evolution of costly mate preferences. II. The “handicap” principle. Evolution45, 1431–1442 (1991)

    Article  Google Scholar 

  • Kimura, M.: The neutral theory of molecular evolution. Cambridge: Cambridge University Press 1983

    Google Scholar 

  • Kubo, R., Matsuo, K., Kitahara, K.: Fluctuation and relaxation of macrovariables. J. Stat. Phys.9, 51–96 (1973)

    Article  Google Scholar 

  • Lande, R.: Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution33, 402–416 (1979)

    Article  Google Scholar 

  • Lawlor, L. R., Maynard Smith, J.: The coevolution and stability of competing species. Amer. Natur.110, 79–99 (1976)

    Article  Google Scholar 

  • Lewontin, R. C.: Pitness, survival, and optimality. In: Horn, D. J., Stairs, G. R., Mitchell, R. D. (eds.) Analysis of Ecological Systems, pp. 3–21. Ohio State University Press 1979

  • Lewontin, R. C.: Gene, organism and environment. In: Bendall, D. S. (ed.) Evolution from molecules to men, pp. 273–285. Cambridge: Cambridge University Press 1983

    Google Scholar 

  • Lewontin, R. C.: The shape of optimality. In: Dupre, J. (ed.) The latest on the best, pp. 151–159. Cambridge: MIT Press 1987

    Google Scholar 

  • Loeschke, V. (ed.): Genetic constraints on adaptive evolution. Berlin: Springer-Verlag 1987

    Google Scholar 

  • Mackay, T. F. C.: Distribution of effects of new mutations affecting quantitative traits. In: Hill, W. G., Thompson, R., Woolliams, J. A. (eds.) Proc. 4th world congress on genetics applied to livestock production, pp. 219–228. 1990

  • Marrow, P., Cannings, C.: Evolutionary instability in predator-prey systems. J. Theor. Biol.160, 135–150 (1993)

    Article  Google Scholar 

  • Marrow, P., Dieckmann, U., Law, R.: Evolutionary dynamics of predator-prey systems: an ecological perspective. J. Math. Biol.34, 556–578 (1996)

    Article  MATH  Google Scholar 

  • Marrow, P., Law, R., Cannings, C.: The coevolution of predator-prey interactions: ESSs and Red Queen dynamics. Proc. Roy. Soc. Lond. B250, 133–141 (1992)

    Google Scholar 

  • Maynard Smith, J.: Evolution and the theory of games. Cambridge: Cambridge University Press 1982

    MATH  Google Scholar 

  • Maynard Smith, J., Burian, R., Kauffman, S. Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., Wolpert, L.: Developmental constraints and evolution. Q. Rev. Biol.60, 265–287 (1985)

    Article  Google Scholar 

  • Maynard Smith, J., Price, G. R.: The logic of animal conflict. Nature Lond.246, 15–18 (1973)

    Article  Google Scholar 

  • Metz, J. A. J., Nisbet, R. M., Geritz, S. A. H.: How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol.7, 198–202 (1992)

    Article  Google Scholar 

  • Metz, J. A. J, Geritz, S. A. H., Iwasa, Y.: On the dynamical classification of evolutionarily singular strategies. University of Leiden Preprint (1994)

  • Nicolis, J. S.: Dynamics of hierarchical systems. Berlin: Springer-Verlag 1986

    MATH  Google Scholar 

  • Ott, E.: Chaos in dynamical systems. Cambridge: Cambridge University Press 1993

    MATH  Google Scholar 

  • Rand, D. A., Wilson, H. B.: Evolutionary catastrophes, punctuated equilibria and gradualism in ecosystem evolution. Proc. Roy. Soc. Lond. B253, 239–244 (1993)

    Google Scholar 

  • Rand, D. A., Wilson, H. B., McGlade, J. M.: Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotype dynamics. Phil. Trans. Roy. Soc. Lond. B343, 261–283 (1994)

    Google Scholar 

  • Reed, J., Stenseth, N. C.: On evolutionarily stable strategies. J. Theor. Biol.108, 491–508 (1984)

    MathSciNet  Google Scholar 

  • Rosenzweig, M. L., Brown, J. S., Vincent, T. L.: Red Queens and ESS: the coevolution of evolutionary rates. Evol. Ecol.1, 59–94 (1987)

    Article  Google Scholar 

  • Roughgarden, J.: The theory of coevolution. In: Futuyma, D. J., Slatkin, M. (eds.) Coevolution, pp. 33–64. Sunderland Massachusetts: Sinauer Associates 1983.

    Google Scholar 

  • Saloniemi, I.: A coevolutionary predator-prey model with quantitative characters. Amer. Natur.141, 880–896 (1993)

    Article  Google Scholar 

  • Schuster, H. G.: Deterministic chaos: an introduction. Weinheim: VCH Verlagsgesellschaft 1989

    MATH  Google Scholar 

  • Serra, R., Andretta, M., Compiani, M., Zanarini, G.: Introduction to the physics of complex systems. Oxford: Pergamon Press 1986

    MATH  Google Scholar 

  • Stearns, S. C.: The evolution of life histories. Oxford: Oxford University Press 1992

    Google Scholar 

  • Takada, T., Kigami, J.: The dynamical attainability of ESS in evolutionary games. J. Math. Biol.29, 513–529 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Taper, M. L., Case, T. J.: Models of character displacement and the theoretical robustness of taxon cycles. Evolution46, 317–333 (1992)

    Article  Google Scholar 

  • Taylor, P. D.: Evolutionary stability in one-parameter models under weak selection. Theor. Pop. Biol.36, 125–143 (1989)

    Article  MATH  Google Scholar 

  • van Kampen, N. G.: Fundamental problems in statistical mechanics of irreversible processes. In: Cohen, E. G. D. (ed.) Fundamental problems in statistical mechanics, pp. 173–202. Amsterdam: North Holland 1962

    Google Scholar 

  • van Kampen, N. G.: Stochastic processes in physics and chemistry. Amsterdam: North Holland 1981

    MATH  Google Scholar 

  • Vincent, T. L.: Strategy dynamics and the ESS. In: Vincent, T. L., Mees, A. I., Jennings, L. S. (eds.) Dynamics of complex interconnected biological systems, pp. 236–262. Basel: Birkhäuser 1990

    Google Scholar 

  • Vincent, T. L., Cohen, Y., Brown, J. S.: Evolution via strategy dynamics. Theor. Pop. Biol.44, 149–176 (1993)

    Article  MATH  Google Scholar 

  • Wissel, C., Stöcker, S.: Extinction of populations by random influences. Theor. Pop. Biol.39, 315–328 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieckmann, U., Law, R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biology 34, 579–612 (1996). https://doi.org/10.1007/BF02409751

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02409751

Key words

Navigation