Skip to main content

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 6))

Abstract

Species do not merely evolve, they also coevolve with other organisms. Coevolution is a major force driving interacting species to continuously evolve exploring their fitness landscapes. Coevolution involves the coupling of species fitness landscapes, linking species genetic changes with their inter-specific ecological interactions. Here we first introduce the Red Queen hypothesis of evolution commenting on some theoretical aspects and empirical evidences. As an introduction to the fitness landscape concept, we review key issues on evolution on simple and rugged fitness landscapes. Then we present key modeling examples of coevolution on different fitness landscapes at different scales, from RNA viruses to complex ecosystems and macroevolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A.F., Lively, C.M.: Parasites and the evolution of self-fertilization. Evolution 55(5), 869–879 (2001)

    Article  Google Scholar 

  2. Agrawal, A.F., Lively, C.M.: Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evol. Ecol. Res. 4, 79–90 (2002)

    Google Scholar 

  3. Bak, P., Flyvjerg, H., Lautrup, B.: Coevolution in a rugged fitness landscape. Phys. Rev. A 46, 6724–6730 (1992)

    Article  Google Scholar 

  4. Benton, M.J.: Red Queen hypothesis. In: Briggs, D.E.G., Growther, P.R. (eds.) Paleobiology, Blackwell, Oxford (1995)

    Google Scholar 

  5. Berryman, A.A., Millstein, J.A.: Are ecological systems chaotic - and if not, why not? Trends Ecol. Evol. 4, 17–28 (1986)

    Google Scholar 

  6. Case, T.J.: An Illustrated Guide to Theoretical Ecology. Oxford University Press, Oxford (2000)

    Google Scholar 

  7. Chen, Z.Q., Benton, M.J.: The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012)

    Article  Google Scholar 

  8. Clarke, D.K., Duarte, E.A., Elena, S.F., Moya, A., Domingo, E., Holland, J.J.: The Red Queen reigns in the kingdom of RNA viruses. Proc. Natl. Acad. Sci. U.S.A. 91, 4821–4824 (1994)

    Article  Google Scholar 

  9. Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London (1859)

    Google Scholar 

  10. Decaestecker, E., Gaba, S., Raeymaekers, J.A.M., Stoks, R., van Kerckhoven, L., Ebert, D., de Meester, L.: Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007)

    Article  Google Scholar 

  11. Dercole, F., Ferriere, R., Rinaldi, S.: Chaotic Red Queen coevolution in a three species food chain. Proc. Roy. Soc. B 277, 2321–2330 (2012)

    Article  Google Scholar 

  12. de Visser, J.A.G.M., Elena, S.F.: The evolution of sex: empirical insights into the roles of epistasis and drift. Nat. Rev. Genetics 8, 139–149 (2007)

    Article  Google Scholar 

  13. Dieckmann, U., Marrow, P., Law, R.: Evolutionary cycling in predator-prey interactions: Population dynamics and the Red Queen. J. Theor. Biol. 176, 91–92 (1995)

    Article  Google Scholar 

  14. Dobzhansky, T.: Genetics and the Origin of Species, 3rd edn. Columbia University Press, New York (1951)

    Google Scholar 

  15. Drossel, B.: Biological evolution and statistical physics. Adv. Phys. 50, 209–295 (2001)

    Article  Google Scholar 

  16. Ehrlich, P.R., Raven, P.H.: Butterflies and plants: A study in coevolution. Evolution 18, 586–608 (1964)

    Article  Google Scholar 

  17. Eigen, M.: Selforganization of matter and evolution of biological macromolecules. Naturwiss 58, 465–523 (1971)

    Article  Google Scholar 

  18. Elena, S.F., Solé, R.V., Sardanyés, J.: Simple genomes, complex interactions: Epistasis in RNA virus. Chaos 20, 26106 (2010)

    Article  Google Scholar 

  19. Ferrière, R., Fox, G.A.: Chaos and evolution. Trends Ecol. E 10, 480–485 (1995)

    Article  Google Scholar 

  20. Flor, H.H.: The complementary genetic systems in flax and flax rust. Adv. Genetics 8, 29–54 (1956)

    Article  Google Scholar 

  21. Freund, H., Wolter, R.: Evolution of bit strings: some preliminary results. Complex Systems 5, 279–298 (1991)

    MATH  Google Scholar 

  22. Gould, S.J.: The Structure of Evolutionary Theory. Harvard University Press, Cambridge (2003)

    Google Scholar 

  23. Grosberg, R.K., Hart, M.W.: Mate selection and the evolution of highly polymorphic self/nonself recognition genes. Science 289, 2111–2114 (2000)

    Article  Google Scholar 

  24. Haken, H.: Advanced Synergetics. Springer Series in Synergetics. Springer, New York (1983)

    Book  MATH  Google Scholar 

  25. Haldane, J.B.S.: The Causes of Evolution. Longmans and Green, London (1932)

    Google Scholar 

  26. Hamilton, W.D.: Sex vs. non-sex vs. parasite. Oikos 35, 282–290 (1980)

    Article  Google Scholar 

  27. Hamilton, W.D., Axelrod, A., Tanese, R.: Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl. Acad. Sci. U.S.A. 87, 3566–3573 (1990)

    Article  Google Scholar 

  28. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72(3), 896–903 (1991)

    Article  Google Scholar 

  29. Hoffman, A.: Testing the Red Queen hypothesis. J. Evol. Biol. 4, 1–7 (1991)

    Article  Google Scholar 

  30. Howard, R.S., Lively, C.M.: Parasitism, mutation accumulation and the maintenance of sex. Nature 367, 554–557 (1994)

    Article  Google Scholar 

  31. Ikegami, T., Kaneko, K.: Evolution of host-parasitoid network through homeochaotic dynamics. Chaos 2, 397–407 (1992)

    Article  Google Scholar 

  32. Ilachinsky, A.: Cellular Automata. A Discrete Universe. World Scientific, Singapore (2000)

    Google Scholar 

  33. Jacob, F.: Evolution and tinkering. Science 196, 1161 (1977)

    Article  Google Scholar 

  34. Jacob, F.: Molecular tinkering in evolution. In: Rondall, D.S. (ed.) Evolution from Molecules to Men. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  35. Jaenike, J.: An hypothesis to account for the maintenance of sex in populations. Evol. Theor. 3, 191–194 (1978)

    Google Scholar 

  36. Kaneko, K., Ikegami, T.: Homeochaos: dynamic stability of a symbiotic network with population dynamics and evolving mutation rates. Physica D 56, 406–429 (1992)

    Article  MATH  Google Scholar 

  37. Kauffman, S.A., Johnsen, J.: Coevolution on the edge of chaos: Coupled fitness landscapes, poised states and coevolutionary avalanches. J. Theor. Biol. 149, 467–505 (1991)

    Article  Google Scholar 

  38. Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)

    Google Scholar 

  39. Kerr, A.: The impact of molecular genetics of plant pathology. Annu. Rev. Phytopathol. 25, 87–110 (1987)

    Article  Google Scholar 

  40. King, K.C., Delph, L.F., Jokela, J., Lively, C.M.: The geographic mosaic of sex and the Red Queen. Curr. Biol. 19, 1438–1441 (2009)

    Article  Google Scholar 

  41. Lafforgue, G., Martínez, F., Sardanyés, J., de la Iglesia, F., Shi-Shun, L., Qi-Wen, N., Solé, R.V., Chua, N.H., Darós, J.-A., Elena, S.F.: Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. J. Virol. 85(19), 9686–9695 (2011)

    Article  Google Scholar 

  42. Li, W.H., Graur, D.: Fundamentals of Molecular Evolution. Sinauer Associates, Sunderland (1991)

    Google Scholar 

  43. Lively, C.M.: Evidence from a New Zealand snail for the maintenance of sex by parasitism. Nature 328, 519–521 (1987)

    Article  Google Scholar 

  44. Manrubia, S.C., Paczuski, M.: A simple model of large-scale organization in Evolution. Int. J. Mod. Phys. C 9, 1025–1032 (1998)

    Article  Google Scholar 

  45. May, R.M., Anderson, R.M.: Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. Lond. B 219, 281–313 (1983)

    Article  MATH  Google Scholar 

  46. McCaskill, J.S., Altemeyer, S.: Error threshold for spatially resolved evolution in the quasispecies model. Phys. Rev. Lett. 86, 5819 (2001)

    Article  Google Scholar 

  47. Mode, D.J.: A mathematical model for the co-evolution of obligate parasites and their hosts. Evolution 12, 158–165 (1958)

    Article  Google Scholar 

  48. Montoya, J.M., Pim, S., Solé, R.V.: Ecological networks and their fragility. Nature 442, 259–264 (2006)

    Article  Google Scholar 

  49. Morran, L.T., Schmidt, O.G., Gelarden, I.A., Parrish II, R.C., Lively, C.M.: Running with the Red Queen: Host-parasite coevolution selects for biparental sex. Science 333, 216–218 (2011)

    Article  Google Scholar 

  50. Newman, M.E.J., Palmer, R.G.: Modeling Extinction. Oxford University Press, New York (2003)

    Google Scholar 

  51. Nicolis, G., Prigogine, I.: Self-Organization in Non-Equilibrium Systems. Wiley-Interscience, New York (1977)

    Google Scholar 

  52. Parker, M.A.: Pathogens and sex in plants. Evol. Ecol. 8, 560–584 (1994)

    Article  Google Scholar 

  53. Pascual, M.: Diffusion-induced chaos in a spatial predator-prey system. Proc. Roy. Soc. London B 251, 1–7 (1993)

    Article  Google Scholar 

  54. Molecular evolution on rugged landscapes: proteins, RNA and the immune system. In: Perelson, A.S., Kauffman, S. (eds.) SFI Studies in the Sciences of Complexity, vol. IX. Addison-Wesley, Redwood (1991)

    Google Scholar 

  55. Quer, J., Huerta, R., Novella, I.S., Tsimring, L., Domingo, E., Holland, J.J.: Reproducible nonlinear population dynamics and critical points during replicative competitions of RNA virus quasispecies. J. Mol. Biol. 264, 465–471 (1996)

    Article  Google Scholar 

  56. Raup, D.M.: Biological extinction and Earth history. Science 231, 1528–1533 (1986)

    Article  Google Scholar 

  57. Raup, D.M.: A kill curve for phanerozoic marine species. Paleobiology 17, 37–48 (1991)

    Google Scholar 

  58. Roopnarine, P.D.: Extinction cascades and catastrophe in ancient food webs. Paleobiology 32(1), 1 (2006)

    Google Scholar 

  59. Sardanyés, J., Solé, R.V.: Chaotic stability in spatially-resovled host-parasite replicators: The Red Queen on a lattice. Int. J. Bif. and Chaos 17(2), 589–606 (2007)

    Article  MATH  Google Scholar 

  60. Sardanyés, J.: Low dimensional homeochaos in coevolving host-parasotoid dimorphic populations: Extinction thresholds under local noise. Commun. Nonlinear Sci. Numer. Simul. 16, 3896–3903 (2011)

    Article  MATH  Google Scholar 

  61. Sardanyés, J., Solé, R.V.: Matching allele dynamics and coevolution in a minimal predator-prey replicator model. Phys. Lett. A 372, 341–350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  62. Sardanyés, J., Solé, R.V.: Red Queen strange attractors in host-parasite replicator gene-for-gene coevolution. Chaos, Solitons and Fractals 32(5), 1666–1678 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Sardanyés, J., Elena, S.F.: Error threshold in RNA quasispecies models with complementation. J. Theor. Biol. 265, 278–286 (2010)

    Article  Google Scholar 

  64. Sardanyés, J., Elena, S.F.: Quasispecies spatial models for RNA viruses with different replication modes and infection strategies. PLoS One 6(9), e24884 (2011)

    Google Scholar 

  65. Sardanyés, J., Solé, R.V., Elena, S.F.: Replication mode and landscape topology differentially affect RNA virus mutational load and robustness. J. Virol. 83(23), 12579–12589 (2009)

    Article  Google Scholar 

  66. Sardanyés, J., Elena, S.F., Solé, R.V.: Simple quasispecies models for the survival-of-the-flattest effect: The role of space. J. Theor. Biol. 250, 560–568 (2008)

    Article  Google Scholar 

  67. Seger, J.: Evolution of exploiter-victim relationships. In: Crawley, M.J. (ed.) Natural Enemies: the Population Biology of Predators, Parasites and Diseases, pp. 3–25. Blackwell, Oxford (1992)

    Google Scholar 

  68. Solé, R.V., Sardanyés, J., Díez, J., Mas, A.: Information catastrophe in RNA viruses through replication thresholds. J. Theor. Biol. 240, 353–359 (2006)

    Article  Google Scholar 

  69. Solé, R.V.: Phase transitions in unstable cancer cell populations. Europ. Phys. Journal 35(1), 117–124 (2003)

    Article  Google Scholar 

  70. Solé, R.V., Ferrer, R., González-García, Q.J., Domingo, E.: Red Queen dynamics, competition and critical points in a model of RNA virus quasispecies. J. Theor. Biol. 198, 47–59 (1999)

    Article  Google Scholar 

  71. Solé, R.V., Bascopmte, J.: Self-organization in Complex Ecosystems. Princeton University Press, Princeton (2006)

    Google Scholar 

  72. Solé, R.V.: On macroevolution, extinctions and critical phenomena. Complexity 1, 40–46 (1996)

    Article  Google Scholar 

  73. Solé, R.V., Bascompte, J., Manrubia, S.C.: Extinction: bad genes or weak chaos? Proc. Roy. Soc. B 263, 161–168 (1996)

    Article  Google Scholar 

  74. Solé, R.V., Manrubia, S.C.: Extinction and self-organized criticality in a model of large-scale evolution. Phys. Rev. E 51, 6250–6253 (1996)

    Article  Google Scholar 

  75. Solé, R.V., Manrubia, S.C.: Criticality and unpredictability in macroevolution. Phys. Rev. E 55, 4500–4508 (1997)

    Article  Google Scholar 

  76. Solé, R.V., Montoya, J., Erwin, D.H.: Recovery after mass extinction: evolutionary assembly in large-scale biosphere dynamics. Phil. Trans. Roy. Soc. B-Biol. Sci. 357, 697–707 (2002)

    Article  Google Scholar 

  77. Solé, R.V., Saldaña, J., Montoya, J.M., Erwin, D.H.: Simple model of recovery dynamics after mass extinction. J. Theor. Biol. 267, 193–200 (2010)

    Article  Google Scholar 

  78. Solé, R.V., Manrubia, S.C., Mercader, J.P., Benton, M., Bak, P.: Long-range correlations in the fossil record and the fractal nature of macroevolution. Adv. Compl. Syst. 1, 255–266 (1998)

    Article  Google Scholar 

  79. Stenseth, N.C., Maynard Smith, J.: Coevolution in ecosystems: Red Queen evolution or stasis? Evolution 38, 870–880 (1984)

    Article  Google Scholar 

  80. Tegmark, M.: An icosahedron-based method for pixelizing the celestial sphere. The Astrophys. J. 470, L81–L84 (1996)

    Google Scholar 

  81. Thompson, J.N.: Interaction and coevolution. Wiley, New York (1982)

    Google Scholar 

  82. Thompson, J.N.: Concepts of coevolution. Trends Ecol. Evol. 4, 179–183 (1989)

    Article  Google Scholar 

  83. Thompson, J.N.: Coevolution and the evolutionary genetics of interactions among plants and insects and pathogens. In: Burdon, J.J., Leather, S.R. (eds.) Pests, Pathogens and Plant Communities, pp. 249–271. Blackwell, Oxford (1990)

    Google Scholar 

  84. Thompson, J.N., Burdon, J.J.: Gene-for-gene coevolution between plants and parasites. Nature 360, 121–125 (1992)

    Article  Google Scholar 

  85. Van Valen, L.: Energy and evolution. Evol. Theory 1, 179–229 (1976)

    Google Scholar 

  86. Van Valen, L.: Evolution as a zero-sum game for energy. Evol. Theory 4, 129–142 (1980)

    Google Scholar 

  87. Van Valen, L.: A new evolutionary law. Evol. Theory 1, 1–30 (1973)

    Google Scholar 

  88. Vidal, C., Pacault, A. (eds.): Non-Equilibrium Dynamics in Chemical Systems. Springer Series in Synergetics. Springer, New York (1984)

    MATH  Google Scholar 

  89. Weltz, J.S., Levin, S.: Size and scaling of predator-prey dynamics. Ecol. Lett. 9, 548–557 (2006)

    Article  Google Scholar 

  90. Wright, S.: Evolution in Mendelian populations. Genetics 16, 97 (1931)

    Google Scholar 

  91. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress on Genetics 1, 356 (1932)

    Google Scholar 

  92. Yip, K.Y., Patel, P., Kim, P.M., Engelman, D.M., McDermott, D., Gerstein, M.: An integrated system for studying residue coevolution in proteins. Bioinformatics 24, 290–292 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Solé, R.V., Sardanyés, J. (2014). Red Queen Coevolution on Fitness Landscapes. In: Richter, H., Engelbrecht, A. (eds) Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41888-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41888-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41887-7

  • Online ISBN: 978-3-642-41888-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics