The Visual Computer

, Volume 7, Issue 5–6, pp 296–308 | Cite as

A geometry-based investigation of the tool path generation for zigzag pocket machining

  • Martin Held


We present a detailed description of a zigzag algorithm for pocket machining. The algorithm is capable of computing correct zigzag tool paths for multiply-connected planar areas (“pockets”) bounded by a wide class of curves. It features a number of optimizations with respect to geometrical and technological objectives. In particular, a near-optimum inclination of the tool path is automatically determined. The underlying geometric principles are simple enough to allow the algorithm to be included in a numerical control computer.

Key words

Pocket machining Tool path generation Scanline method Computational geometry Geometric reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansaldi S, Boato L, del Canto M, Fusconí F, Gianniní F (1989) Integration of AI techniques and CAD solid modeling for process planning applications. In: Kimura F, Rolstadås A (eds) Computer applications in production and engineering, Proc CAPE '89. North Holland, Amsterdam, Toyko, pp 351–364Google Scholar
  2. Baase S (1988) Computer algorithms (2nd edn.) Addison-Wesley, ReadingGoogle Scholar
  3. Bruckner LK (1982) Geometric algorithms for 21/2D roughing process of sculptured surfaces. Joint Anglo-Hungarian Seminar on Computer-Aided Geometric Design Computer and Automation Institute, BudapestGoogle Scholar
  4. Choi BK, Barash MM (1985) STOPP: an approach to CAD/CAM integration. Computer-Aided Design 17(4):162–168Google Scholar
  5. Choi BK, Barash MM, Anderson DC (1984) Automatic recognition of machined surfaces from 3D solid model. Computer-Aided Design 16(2):81–86Google Scholar
  6. Diedenhoven H (1984) Anwendung von Algorithmen der rechnerunterstützten Konstruktion zur Ermittlung kollisionsfreier Werkzeugwege für NC-Maschinen mit fünf Bewegungsachsen (Application of CAD techniques for the generation of a collision-free tool path for NC machines with five axes). Technical Report, Institut für Konstruktionstechnik, Ruhr-Universität BochumGoogle Scholar
  7. Farouki RT, Neff CA (1989) Some analytic and algebraic properties of plane offset curves. Technical report RC-14364, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USAGoogle Scholar
  8. Genord DC, Welch MG, Houser RV, Wyttenbach L (1988) An automatic NC processor: harnessing the technology of form feature based solids modeling. Proc AUTOFACT'88, pp 11.1–11.11Google Scholar
  9. Grötschel M, Lovász L, Schujver A (1985) Geometric algorithms and combinatorial optimization (2nd edn). Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. Groover MP, Zimmers EW (1984) CAD/CAM: computer-aided design and manufacturing. Prentice-Hall, Englewood CliffsGoogle Scholar
  11. Guyder MK (1989) Automating the optimization of 21/2 axis milling. In: Kimura F, Rolstadås A (eds) Computer applications in production and engineering, Proc CAPE'89Google Scholar
  12. Hansen A, Arbab F (1988) An algorithm for generating NC tool paths for arbitrarily shaped pockets with islands. Technical Report CS 88-51, CS Department, University of Southern CaliforniaGoogle Scholar
  13. Harenbrock D (1980) Die Kopplung von rechnerunterstützter Konstruktion und Fertigung mit dem Programmbaustein PROREN 1/NC (The connection of CAD and CAM by means of the program package PROREN 1/NC). Technical Report, Institut für Konstruktionstechnik, Ruhr-Universität BochumGoogle Scholar
  14. Held M (1989) GeoPocket — a sophisticated computational geometry solution of geometrical and technological problems arising from pocket machining. In: Kimura F, Rolstadås A (eds) Computer applications in production and engineering, Proc CAPE'89. North Holland, Amsterdam Tokyo, pp 283–293Google Scholar
  15. Held M (1991) On the computational geometry of pocket machining. Springer LNCS 500, Berlin Heidelberg New YorkGoogle Scholar
  16. Hoschek J (1985) Oflset curves in the plane. Computer-Aided Design 17(2):77–82Google Scholar
  17. Klass R (1983) An offset spline approximation for plane cubic splines. Computer-Aided Design 15(5):297–299Google Scholar
  18. Kral IH (1986) Numerical control programming in APT. Prentice-Hall, Englewood CliffsGoogle Scholar
  19. Lallande JB, Purves L, Walch A, Pumo DA (1984) Super Pocket. Advancing manufacturing technologies, pp 18–29Google Scholar
  20. Parkinson A (1986) The use of solid models in BUILD as a database for NC machining. In: Crestin JP, McWaters JF (eds) Software for discrete manufacturing. Proc Prolamat '85. North Holland, Amsterdam Paris, pp 175–183Google Scholar
  21. Perng D-B, Chen Z, Li R-K (1990) Automatic 3D machining feature extraction from 3D CSG solid input. Computer-Aided Design 22(5):285–295Google Scholar
  22. Persson H (1978) NC machining of arbitrarily shaped pockets. Computer-Aided Design 10(3):169–174Google Scholar
  23. Preiss K, Kaplansky E (1983) Automatic mill routing from solid geometry information. Computer Applications in Production and Engineering, Proc CAPE '83Google Scholar
  24. Preiss K, Kaplansky E (1985) Automated CNC milling by artificial intelligence methods. J Manufact Syst 4(1):51–63Google Scholar
  25. Preiss K (1989) Automated mill pocketing computations. In: Advanced geometric modeling for engineering applications. North Holland, Amsterdam BerlinGoogle Scholar
  26. Preparata FP, Shamos MI (1988) Computational geometry an introduction. Texts and monographs in computer science (2nd edn). Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Ranta M, Inui M, Kimura F (1989) A process planning system for producibility feedback to, designers. In: Kimura F, Rolstadås A (eds) Computer applications in production and engineering, Proc CAPE'89. North Holland, Amsterdam Tokyo, pp 373–381Google Scholar
  28. Rembold U, Dillmann R (1986) Computer-aided design and manufacturing. In: Symbolic computation — computer graphics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. Saeed SEO, de Pennington A,k Dodsworth JR (1988) An efficient 2D solid offsetting algorithm. Technical Report, Department of Mechanical Engineering, University of LeedsGoogle Scholar
  30. Sedgewick R, Harrison MA (1988) Algorithms Computer science (2nd edn). Addison-Wesley, ReadingGoogle Scholar
  31. Suh YS, Lee K (1990) NC milling tool path generation for arbitrary pockets defined by sculptured surfaces. Computer-Aided Design 22(5):273–284Google Scholar
  32. Tiller W, Hanson E (1984) Offsets of two-dimensional profiles. IEEE Comput Graph Appl pp 36–46Google Scholar
  33. Wang H-P (1987) On the efficiency of NC tool path planning for face milling operations. J Eng Ind 109(4):370–376Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Martin Held
    • 1
  1. 1.Institut für ComputerwissenschaftenUniversität SalzburgSalzburgAustria

Personalised recommendations