Communications in Mathematical Physics

, Volume 85, Issue 4, pp 549–561 | Cite as

Orbital stability of standing waves for some nonlinear Schrödinger equations

  • T. Cazenave
  • P. L. Lions


We present a general method which enables us to prove the orbital stability of some standing waves in nonlinear Schrödinger equations. For example, we treat the cases of nonlinear Schrödinger equations arising in laser beams, of time-dependent Hartree equations ....


Neural Network Statistical Physic Laser Beam Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A., Clarke, F.H.: Gross's logarithmic sobolev inequality: a simple proof (preprint)Google Scholar
  2. 2.
    Berestycki, H., Cazenave, T.: To appearGoogle Scholar
  3. 3.
    Berestycki, H., Lions, P.L.: Existence d'ondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon. C. R. Paris287, 503–506 (1978);288, 395–398 (1979)Google Scholar
  4. 4.
    Berestycki, H., Lions, P.L.: Nonlinear scalar fields equations. Parts I and II. Arch. Rat. Mech. Anal. (to appear)Google Scholar
  5. 5.
    Berger, M.S.: On the existence and structure of stationary states for a nonlinear Klein-Gordon equation. J. Funct. Anal.9, 249–261 (1972)Google Scholar
  6. 6.
    Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys.100, 62–93 (1976)Google Scholar
  7. 7.
    Cazenave, T.: Equations de Schrödinger non linéaires. Thèse de 3ème cycle Univ. P. et M. Curie, Paris (1978)Google Scholar
  8. 8.
    Cazenave, T.: Equations de Schrödinger non linéaires en dimension deux. Proc. R. Soc. Edin88, 327–346 (1979)Google Scholar
  9. 9.
    Cazenave, T.: Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal. T.M.A. (to appear)Google Scholar
  10. 10.
    Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Gauchy problem, general case. J. Funct. Anal.32, 1–32 (1979)Google Scholar
  11. 11.
    Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. III. Special theories in dimensions 1, 2, and 3. Ann. Inst. Henri Poincaré28, 287–316 (1978)Google Scholar
  12. 12.
    Ginibre, J., Velo, G.: Equation de Schrödinger non linéaire avec interaction non locale. C. R. Paris288, 683–685 (1979)Google Scholar
  13. 13.
    Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations with non local interaction. Math. Zeitschr. (to appear)Google Scholar
  14. 14.
    Glassey, R.T.: On the blowing-up of solutions to the Cauchy Problem for nonlinear Schrödinger equations. J. Math. Phys.18, 1794–1797 (1977)Google Scholar
  15. 15.
    Hartree, D.: The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Proc. Camb. Philos. Soc.24, 89–132 (1968)Google Scholar
  16. 16.
    Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett.15, 1005–1008 (1965)Google Scholar
  17. 17.
    Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math.57, 93–105 (1977)Google Scholar
  18. 18.
    Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys.53, 185–194 (1974)Google Scholar
  19. 19.
    Lions, P.L.: The Choquard equation and related equations. Nonlinear Anal. T.M.A.4, 1063–1073 (1980)Google Scholar
  20. 20.
    Lions, P.L.: Some remarks on Hartree equation. Nonlinear Anal. T.M.A.5, 1245–1256 (1981)Google Scholar
  21. 21.
    Lions, P.L.: Principe de concentration — compacité en calcul des variations. C. R. Paris294, 261–264 (1982)Google Scholar
  22. 22.
    Lions, P.L.: To appearGoogle Scholar
  23. 23.
    Lin, J.E., Strauss, W.: Decay and scattering of solutions of a nonlinear Schrödinger equation. J. Funct. Anal.30, 245–263 (1978)Google Scholar
  24. 24.
    MacLeod, K., Serrin, J.: Personal communicationGoogle Scholar
  25. 25.
    Nehari, Z.: On a nonlinear differential equation arising in nuclear physics. Proc. R. Irish Acad.62, 117–135 (1963)Google Scholar
  26. 26.
    Pecher, H., Von Wahl, W.: Time dependent nonlinear Schrödinger equations. Manuscripta Mathematica (to appear)Google Scholar
  27. 27.
    Reeken, M.: Global theorem on bifurcation and its application to the Hartree equation of the Helium atom. J. Math. Phys.11, 2505–2512 (1970)Google Scholar
  28. 28.
    Ryder, G.: Boundary value problems for a class of nonlinear differential equations. Pac. J. Math.22, 477–503 (1967)Google Scholar
  29. 29.
    Slater, J.C.: A note on Hartree's method. Phys. Rev.35, 210–211 (1930)Google Scholar
  30. 30.
    Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys.55, 149–162 (1977)Google Scholar
  31. 31.
    Strauss, W.: The nonlinear Schrödinger equation. Proceedings of the Rio conference, August 1977Google Scholar
  32. 32.
    Stuart, C.A.: Existence theory for the Hartree equation. Arch. Rat. Mech. Anal.51, 60–69 (1973)Google Scholar
  33. 33.
    Stuart, C.A.: An example in nonlinear functional analysis: the Hartree equation. J. Math. Anal. Appl.49, 725–733 (1975)Google Scholar
  34. 34.
    Suydam, B.R.: Self-focusing of very powerful laser beams. U.S. Dept. of Commerce. N.B.S. Special Publication 387Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • T. Cazenave
    • 1
  • P. L. Lions
    • 2
  1. 1.C.N.R.S. Laboratoire d'Analyse NumeriqueUniversité P. et M. CurieParis Cedex 05France
  2. 2.CeremadeUniversité Paris IXParis Cedex 16France

Personalised recommendations