Advertisement

Foundations of Physics Letters

, Volume 5, Issue 5, pp 443–456 | Cite as

On the relativistic velocity composition paradox and the Thomas rotation

  • Constantin I. Mocanu
Article

Abstract

The non-commutativity and the non-associativity of the composition law of the non-colinear velocities lead to an apparent paradox, which in turn is solved by the Thomas rotation. A 3×3 parametric, unimodular and orthogonal matrix elaborated by Ungar is able to determine the Thomas rotation. However, the algebra involved in the derivation of the Thomas rotation matrix is overwhelming. The aim of this paper is to present a direct derivation of the Thomas angle as the angle between the composite vectors of the non-colinear velocities, thus obtaining a simplicity with which the rotation can be expressed. This allows the formulation of an alternative to the statement related to the necessity of the Thomas rotation of the Cartesian axes by the statement implying the necessity of the rotation of the direct (inverse) relativistic composite velocity to coincide with the inverse (direct) relativistic composite velocity.

Key words

Special relativity Thomas rotation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. H. Thomas, “The motion of the spinning electron,”Nature 117, 514 (1926).Google Scholar
  2. 2.
    L. H. Thomas, “The kinematics of an electron with an axis,”Phil. Mag. 3, 1–22 (1927).Google Scholar
  3. 3.
    L. H. Thomas, “Recollections of the discovery of the Thomas precessional frequency,”AIP Conference Proceedings, No. 95 (High Energy Spin Physics), G. M. Bunce, ed. (Brookhaven National Laboratory, 1982), pp. 4-12.Google Scholar
  4. 4.
    A. A. Ungar, “The relativistic velocity composition paradox and the Thomas rotation,”Found. Phys. 19, 1385–1396 (1989).Google Scholar
  5. 5.
    G. P. Sastry, “Is Length contraction really paradoxical?,”Am. J. Phys. 55, 943–945 (1987).Google Scholar
  6. 6.
    C. I. Mocanu, “Some difficulties within the framework of relativistic electrodynamics,”Arch. Elektrotech. 69, 97–110 (1986).Google Scholar
  7. 7.
    A. A. Ungar, “Thomas rotation and the parametrization of the Lorentz transformation group,”Found. Phys. Lett. 1, 57–89 (1988).Google Scholar
  8. 8.
    A. A. Ungar, “The Thomas rotation formalism underlying a non-associative group structure for relativistic velocities,”Appl. Math. Lett. 1, 403–405 (1988).Google Scholar
  9. 9.
    A. A. Ungar, “The relativistic non-commutative non-associative group of velocities and the Thomas rotation,”Results in Mathematics 16, 168–179 (1989).Google Scholar
  10. 10.
    A. A. Ungar, “Axiomatic approach to the non-associative group of relativistic velocities,”Found Phys. Lett. 2, 199–203 (1989).Google Scholar
  11. 11.
    A. A. Ungar, “Weakly associative groups,”Results in Mathematics 17, 149–168 (1990).Google Scholar
  12. 12.
    A. A. Ungar, “Thomas precession and its associated group - like structure,”Am. J. Phys. 54, 824–834 (1991).Google Scholar
  13. 13.
    A. A. Ungar, “Quasidirect product groups and the Lorentz transformation group,” in T. M. Rassias, ed.Constantin Caratheodory: An International Tribute (World Scientific, Singapore, 1991), pp. 1378–1392.Google Scholar
  14. 14.
    A. A. Ungar, “Successive Lorentz transformations of the electromagnetic field,”Found. Phys. 21, 569–589 (1991).Google Scholar
  15. 15.
    A. Einstein,Sidelights on relativity (Methuen, London, 1922).Google Scholar
  16. 16.
    R. P. Feynman, R. B. Leighton, M. Sands,The Feynman Lectures (Addison-Wesley, Reading, Massachusetts, 1964), Vol. II, Sec. 17-4.Google Scholar
  17. 17.
    M. C. Møller,The Theory of Relativity (Clarendon Press, Oxford, 1952).Google Scholar
  18. 18.
    W. Rindler,Special Relativity (Oliver & Boyd, London, 1986).Google Scholar
  19. 19.
    S. Ben-Menahem, “The Thomas precession and velocity space curvature,”J. Math. Phys. 27, 1234–1296 (1986).Google Scholar
  20. 20.
    S. Ben-Menahem, “Wigner rotation revisited,”Am. J. Phys. 53, 62–66 (1985).Google Scholar
  21. 21.
    S. Dencoff and D. R. Inglis, “On the Thomas precession of accelerated axes,”Phys. Rev. 50, 784 (1936).Google Scholar
  22. 22.
    G. P. Fisher, “The Thomas precession,”Am. J. Phys. 40, 1772–1781 (1972).Google Scholar
  23. 23.
    W. H. Furry, “Lorentz transformation and the Thomas precession,”Am. J. Phys. 23, 517–525 (1955).Google Scholar
  24. 24.
    A. C. Hirshfeld and Metzger, “A simple formula for combining rotations and Lorentz boosts,”Am. J. Phys. 54, 550–552 (1986).Google Scholar
  25. 25.
    E. G. P. Rowe, “The Thomas precession,”Eur. J. Phys. 5, 40–45 (1984).Google Scholar
  26. 26.
    N. Salingaros, “The Lorentz group and the Thomas precession: Exact results for the product of two boosts,”J. Math. Phys. 27, 157–162 (1986); also “Erratum: The Lorentz,J. Math. Phys. 29, 1265 (1988).Google Scholar
  27. 27.
    David Shelupsky, “Derivation of the Thomas precession formula,”Am. J. Phys. 35, 650–651 (1967).Google Scholar
  28. 28.
    Thomas Phipps,Heretical Verities: Mathematical Themes in Physical Description (Classical Non-Fiction Library, Box 926 Urbana, Illinois 61801, 1986).Google Scholar
  29. 29.
    M. E. Noz and Y. S.Kim, Special Relativity and Quantum Theory (Kluwer Academic, Dordrecht, 1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Constantin I. Mocanu
    • 1
  1. 1.Electrical Engineering DepartmentPolytechnic Institute of BucharestBucharestRomania

Personalised recommendations