Advertisement

Plant Cell Reports

, Volume 11, Issue 11, pp 586–591 | Cite as

Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells

  • Jun Cao
  • Xiaolan Duan
  • David McEIroy
  • Ray Wu
Article

Summary

Suspension cells of Oryza sativa L. (rice) were transformed, by microprojectile bombardment, with plasmids carrying the coding region of the Streptomyces hygroscopicus phosphinothricin acetyl transferase (PAT) gene (bar) under the control of either the 5′ region of the rice actin 1 gene (Act1) or the cauliflower mosaic virus (CaMV) 35S promoter. Subsequently regenerated plants display detectable PAT activity and are resistant to BASTATM, a phosphinothricin (PPT)-based herbicide. DNA gel blot analyses showed that PPT resistant rice plants contain a bar-hybridizing restriction fragment of the expected size. This report shows that expression of the bar gene in transgenic rice plants confers resistance to PPT-based herbicide by suppressing an increase of ammonia in plants after spraying with the herbicide.

Key words

Transgenic rice Herbicide resistance Phosphinothricin acetyl transferase gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cao J, Wang YC, Klein TK, Sanford J, Wu R (1990) in Plant Gene Transfer (Lamb CJ, Beachy RN, eds.), Wiley-Liss, New York, USA, pp. 21–33Google Scholar
  2. Cao J, Zhang W, McElroy D, Wu R (1991) in Rice Biotechnology (Khush GS, Toenniessen GH, eds.), C.A.B. International, Oxon, UK, pp. 175–198Google Scholar
  3. Christou P, Ford TL, Kofron M (1991) Bio/Tech 9:957–962Google Scholar
  4. Datta SK, Peterhans A, Datta K, Potrykus I (1990) Bio/Tech 8:736–740Google Scholar
  5. Dekeyser R, Claes B, Marichal M, Van Montague M, Caplan A (1989) Plant Physiol 90:217–223Google Scholar
  6. D'Halluin K, De Block M, Denecke J, Janssens J, Leemans J, Reynaerts A, Botterman J (1992) Meth Enzymol 216: in pressGoogle Scholar
  7. Linsmaier EM, Skoog F (1965) Physiol Plant 18:100–127Google Scholar
  8. McElroy D, Zhang W, Cao J, Wu R (1990) Plant Cell 2:163–171CrossRefPubMedGoogle Scholar
  9. McElroy D, Blowers AD, Jenes B, Wu R (1991) Mol Gen Genet 231:150–160Google Scholar
  10. Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Nature 338:274–276Google Scholar
  11. Tachibana K, Watanabe T, Sekizawa Y, Takematsu T (1986) J Pest Sci 11:33–37Google Scholar
  12. Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) EMBO J 6:2519–2523Google Scholar
  13. Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Bio/Tech 6:1072–1074Google Scholar
  14. White J, Chang S-YP, Bibb MJ, Bibb MJ (1990) Nucl Acids Res 18:1062Google Scholar
  15. Wu R, Kemmerer EC, McElroy D (1990) in Gene Manipulation in Plant Improvement II (Gustafson JP, ed.), Plenum Press, NY, pp. 251–263Google Scholar
  16. Yang H, Zhang HM, Davey MR, Mulligan BJ, Cocking EC (1988) Plant Cell Rep 7:421–425Google Scholar
  17. Ye GN, Daniell H, Sanford JC (1990) Plant Mol Biol 15:809–819Google Scholar
  18. Zhang W, Wu R (1988) Theor Appl Genet 76:835–840Google Scholar
  19. Zhang W, McElroy D, Wu R (1991) Plant Cell 3:1155–1165Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Jun Cao
    • 1
  • Xiaolan Duan
    • 3
  • David McEIroy
    • 2
  • Ray Wu
    • 2
    • 3
  1. 1.Plant Science Center, Cornell UniversityIthacaUSA
  2. 2.Field of Botany, Cornell UniversityIthacaUSA
  3. 3.Department of BiochemistryMolecular and Cell Biology, Cornell UniversityIthacaUSA

Personalised recommendations