Molecular and Cellular Biochemistry

, Volume 105, Issue 2, pp 107–117

Uteroferrin contains complex and high mannose-type oligosaccharides when synthesized in vitro

  • George A. Baumbach
  • Philippa T. K. Saunders
  • Catherine M. Ketcham
  • Fuller W. Bazer
  • R. Michael Roberts
Article

Abstract

Mature uteroferrin (Uf; MΓ = 35,500) is a progesterone-induced acid phosphatase secreted by the pig uterus. It contains a single, unphosphorylated, high mannose-type oligosaccharide. Endometrial explants cultured in vitro secrete Uf with a MΓ of 37,000 (37k Uf) having phosphorylated high mannose oligosaccharides. In this report we demonstrate that 37k Uf contains two N-linked oligosaccharides which are a mixture of complex and high mannose-type oligosaccharides. The complex-type glycopeptides are biantennary and a portion may be fucosylated on the GlcNac of the chitobiose core proximal to the peptide. Only a portion of the high mannose-type oligosaccharides are phosphorylated. The remainder appear to be typical Man6-4GlcNac2 oligosaccharides found on mature Uf.

Key words

iron transport uteroferrin glycoprotein pregnancy swine 

Abbreviations

Uf

Uteroferrin

ConA

Concanavalin A

WGA

Wheat Germ Agglutinin

endoH

endo-β-N-acetylglucosaminidase H

SDS

Sodium Dodecyl Sulfate

SDS-PAGE

polyacrylamide gel electrophoresis in the presence of SDS

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roberts RM, Bazer FW: Uteroferrin, a protein in search of a function. Bioessays 1: 8–11, 1984Google Scholar
  2. 2.
    Roberts RM, Raub TJ, Bazer FW: Role of uteroferrin in transplacental iron transport in the pig. Fed Proc 45: 2513–2518, 1986Google Scholar
  3. 3.
    Saunders PTK, Renegar RH, Raub TJ, Baumbach GA, Atkinson PH, Bazer FW, Roberts RM: The carbohydrate structure of porcine uteroferrin and the role of the high mannose chains in promoting uptake by the reticulo-endothelial cells of the fetal liver. J Biol Chem 260: 3658–3665, 1984Google Scholar
  4. 4.
    Hunt DF, Yates JR, Shabanowitz J, Zhu N-Z, Sirino T, Averill BA, Daurot-Larroque ST, Shewale JG, Roberts RM, Brew K: Sequence homology in the metalloproteins: purple acid phosphatase from beef spleen and uteroferrin from porcine uterus. Biochem Biophys Res Communic 144: 1154–1160, 1987Google Scholar
  5. 5.
    Ketcham CM, Roberts RM, Simmen RCM, Nick HS: Molecular cloning of the type 5, iron-containing, tartrate resistant acid phosphatase from human placenta. J Biol Chem 264: 557–563, 1989Google Scholar
  6. 6.
    Baumbach GA, Saunders PTK, Bazer FW, Roberts RM: Uteroferrin has N-asparagine-linked high mannose-type oligosaccharides that contain mannose 6-phosphate. Proc Natl Acad Sci (USA) 81: 2985–2989, 1984Google Scholar
  7. 7.
    Roberts RM, Baumbach GA, Saunders PTK, Raub TJ, Renegar RH, Bazer FW: Possible function of carbohydrate on glycoproteins secreted by the pig uterus during pregnancy. Molec Cell Biochem 72: 67–79, 1986Google Scholar
  8. 8.
    Sly WS, Natowicz M, Gonzalez-Noriega A, Grubb JH, Fisher HD: The role of the mannose 6-phosphate recognition marker in the uptake and intracellular transport of lysosomal enzymes. In: Callahan JM, Lowden D (ed.) Lysosomes and lysosomal storage diseases. Raven Press, NY, 1981, pp 131–146Google Scholar
  9. 9.
    Lang L, Reitman RL, Tang J, Roberts RM, Kornfeld S: Recognition of a protein dependent determinant allows specific phosphorylation of oligisaccharides present on lysosomal enzymes. J Biol Chem 259: 14633–14671, 1984Google Scholar
  10. 10.
    Frank M, Bazer FW, Thatcher WW, Wilcox CJ: A study of prostaglandin F2α as the luteolysin in swine. III. Effects of estradiol valerate on prostaglandin F, progestins, estrone and estradiol concentrations in the utero-ovarian vein of non-pregnant gilts. Prostaglandins 14: 1183–1196, 1977Google Scholar
  11. 11.
    Basha SMM, Bazer FW, Roberts RM: Effect of the conceptus on quantitative and qualitative aspects of uterine secretion in pigs. J Reprod Fertil 60: 41–48, 1980Google Scholar
  12. 13.
    Campbell HD, Dionysius DA, Keough DT, Wilson BE, de Jersey J, Zerner B: Iron-containing acid phosphatases: comparison of the enzymes from beef spleen and pig allantoic fluid. Biochem Biophys Res Communic 82: 615–620, 1978Google Scholar
  13. 14.
    Varki A, Kornfeld S: Structural studies of phosphorylated high mannose-type oligosaccharides. J Biol Chem 255: 10847–10856, 1980Google Scholar
  14. 15.
    Kornfeld K, Reitman RL, Kornfeld R: The carbohydrate-binding specificity of pea and lentil lectins. J Biol Chem 256: 6633–6640, 1981Google Scholar
  15. 16.
    Cummings RD, Kornfeld S: Fractionation of asparagine-linked oligosaccharides by serial lectin-agarose affinity chromatography. J Biol Chem 257: 11235–11240, 1982Google Scholar
  16. 17.
    Yamamoto K, Tsuji T, Matsumoto I, Osawa T: Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. Biochemistry 20: 5894–5899, 1981Google Scholar
  17. 18.
    Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227: 680–685, 1970Google Scholar
  18. 19.
    Chamberlain JP: Fluorographic detection of radioactivity in polyacrylamide gels with the water soluble fluor sodium salicylate. Analyt Biochem 98: 132–135, 1979Google Scholar
  19. 20.
    Maley F, Trimble RB, Tarentino AL, Plummer TH Jr: Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Analyt Biochem 180: 195–204, 1989Google Scholar
  20. 21.
    Baenziger JU, Fiete D: Structural determinants of concanavalin A specificity for oligosaccharides. J Biol Chem 254: 2400–2407Google Scholar
  21. 22.
    Osawa T, Tsuji T: Fractionation and stuctural assessment of oligosaccharides and glycopeptides by use of immobilized lectins. Ann Rev Biochem 56: 21–42, 1987Google Scholar
  22. 23.
    Baumbach GA, Ketcham CM, Richardson DR, Bazer FW,Roberts RM: Isolation and characterization of a high molecular weight stable pink form of uteroferrin from uterine secretions and allantoic fluid of pigs. J Biol Chem 261: 12869–12878, 1986Google Scholar
  23. 24.
    Varki A, Kornfeld S: The spectrum of anionic oligosaccharides released by endo-β-N-acetylglucosaminidase H from glycoproteins. J Biol Chem 258: 2808–2818, 1983Google Scholar
  24. 25.
    Faust PL, Chirgwin JM, Kornfeld S: Renin, a secretory glycoprotein, acquires phosphomannosyl residues. J Cell Biol 105: 1947–1955, 1987Google Scholar
  25. 26.
    Hansen PJ, Bazer FW, Roberts RM: Appearance of β-hexosaminidase and other lysosomal-like enzymes in the uterine lumen of gilts, ewes and mares in response to progesterone and oestrogens. J Reprod Fertil 73: 411–424, 1985Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • George A. Baumbach
    • 1
  • Philippa T. K. Saunders
    • 2
  • Catherine M. Ketcham
    • 2
  • Fuller W. Bazer
    • 3
  • R. Michael Roberts
    • 4
  1. 1.Department of Animal Science, College of Veterinary MedicineThe University of TennesseeKnoxvilleUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleUSA
  3. 3.Department of Animal ScienceUniversity of FloridaGainesvilleUSA
  4. 4.Department of Animal ScienceUniversity of MissouriColumbiaUSA
  5. 5.MRC Reproductive Biology UnitCentre for Reproductive BiologyEdinburghScotland
  6. 6.Division of Hematology, OncologyWashington University School of Medicine and BiochemistrySt LouisUSA

Personalised recommendations