Skip to main content
Log in

Fibre optic fluorometric enzyme sensors for hydrogen peroxide and lactate, based on horseradish peroxidase and lactate oxidase

  • Original Papers
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An optical biosensor for the determination of hydrogen peroxide based on immobilized horseradish peroxidase is described. The fluorescence of the dimeric product of the enzyme catalysed oxidation of homovanillic acid is utilized to determine the concentration of H2O2. The membrane-bound enzyme is attached to a bifurcated fibre bundle permitting excitation and detection of the fluorescence by a fluorometer. The response of the sensor is linear from 1 to 130 μM hydrogen peroxide; the coefficient of variation is 3%. The sensor is stable for more than 10 weeks. The operating pH for maximal sensor response is 8.15. This allows the sensor to be used in combination with oxidase reactions producing hydrogen peroxide, as is demonstrated with a co-immobilized lactate oxidase-horseradish peroxidase optode for the determination of L-lactate. The fluorescence intensity of this sensor depends linearly on the concentration of lactate between 3 and 200 μM and a throughput of 10 samples per hour is possible. The precision is in the same range as that of the monoenzyme optode. The lifetime of the bienzyme sensor for lactate is considerably shorter than that of the peroxidase sensor; it is limited by the stability of the immobilized lactate oxidase enzyme. The sensor has been applied to the determination of lactate in control serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. S. Wolfbeis (ed.),Fiber Optic Chemical Sensors and Biosensors, CRC, Boca Raton, Florida, 1991.

    Google Scholar 

  2. M. J. Goldfinch, C. R. Lowe,Anal. Biochem. 1984,138, 430.

    PubMed  Google Scholar 

  3. W. Trettnak, M. J. Leiner, O. S. Wolfbeis,Biosensors 1988,4, 15.

    Google Scholar 

  4. B. P. H. Schaffar, O. S. Wolfbeis,Biosens. Bioelectron. 1990,5, 137.

    PubMed  Google Scholar 

  5. W. Trettnak, O. S. Wolfbeis,Anal. Biochem. 1990,184, 124.

    PubMed  Google Scholar 

  6. B. A. A. Dremel, S. Y. Li, R. D. Schmid,Biosens. Bioelectron. 1992,7, 133.

    PubMed  Google Scholar 

  7. W. Trettnak, O. S. Wolfbeis,Fresenius Z. Anal. Chem. 1989,334, 427.

    Google Scholar 

  8. W. Trettnak, O. S. Wolfbeis,Anal. Chim. Acta 1989,221, 195.

    Google Scholar 

  9. D. B. Papkovsky,Sens. Actuators. B. 1993,11, 293.

    Google Scholar 

  10. B. A. Petersson, in:Biosensors International Workshop 1987, GBF Monographs, Vol. 10 (R. D. Schmid, ed.), VCH, Weinheim, 1987, p. 325.

    Google Scholar 

  11. X. Xie, A. A. Suleiman, G. G. Guilbault, Z. Yang, Z. Sun,Anal. Chim. Acta 1992,266, 325.

    Google Scholar 

  12. A. A. Suleiman, R. L. Villarta, G. G. Guilbault,Anal. Lett. 1993,26, 1493.

    Google Scholar 

  13. T. M. Freeman, W. R. Seitz,Anal. Chem. 1978,50, 1242.

    Google Scholar 

  14. M. Aizawa, Y. Ikariyama, H. Kuno,Anal. Lett. 1984,17, 555.

    Google Scholar 

  15. M. Demura, T. Asakura, E. Nakamura, H. Tamura,J. Biotechnol. 1989,10, 113.

    Google Scholar 

  16. L. J. Blum, J. M. Plaza, P. R. Coulet,Anal. Lett. 1987,20, 317.

    Google Scholar 

  17. L. J. Blum, S. M. Gautier, P. R. Coulet,Anal. Lett. 1988,21, 717.

    Google Scholar 

  18. J. Hlavay, G. G. Guilbault,Acta Chim. Hung. 1993,130, 83.

    Google Scholar 

  19. G. Blankenstein, F. Preuschoff, U. Spohn, K. H. Mohr, M. R. Kula,Anal. Chim. Acta 1993,271, 231.

    Google Scholar 

  20. E. H. Hansen, L. Norgaard, M. Pedersen,Talanta 1991,38, 275.

    Google Scholar 

  21. L. J. Blum,Enzyme Microb. Technol. 1993,15, 407.

    Google Scholar 

  22. G. G. Guilbault, P. Brignac, M. Zimmer,Anal. Chem. 1968,40, 190.

    PubMed  Google Scholar 

  23. G. G. Guilbault, P. J. Brignac, M. Juneau,Anal. Chem. 1968,40, 1256.

    PubMed  Google Scholar 

  24. Y. X. Ci, F. Wang,Anal. Chim. Acta 1990,233, 299.

    Google Scholar 

  25. F. Wang, F. Schubert, H. Rinneberg,Sens. Actuators 1995,28, 3.

    Google Scholar 

  26. Y. -X. Ci, F. Wang,Fresenius J. Anal. Chem. 1991,339, 46.

    Google Scholar 

  27. T. Tsuchida, H. Takasugi, K. Yoda, K. Takizawa, S. Kobayashi,Biotechnol. Bioeng. 1985,27, 837.

    Google Scholar 

  28. D. L. Wang, A. Heller,Anal. Chem. 1993,65, 1069.

    PubMed  Google Scholar 

  29. G. Bardeletti, F. Sechaud, P. R. Coulet,Anal. Chim. Acta 1986,187, 47.

    Google Scholar 

  30. W. Strassner,Laborwerte und ihre klinische Bedeutung, 4th Ed., Volk und Gesundheit, Berlin, 1981, p. 176.

    Google Scholar 

  31. D. A. Scott, A. W. Skillen,Anal. Chim Acta 1992,256, 47.

    Google Scholar 

  32. F. Sechaud, S. Peguin, P. R. Coulet, G. Bardeletti,Process Biochem. 1989,February, 33.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, F., Wang, F. & Rinneberg, H. Fibre optic fluorometric enzyme sensors for hydrogen peroxide and lactate, based on horseradish peroxidase and lactate oxidase. Mikrochim Acta 121, 237–247 (1995). https://doi.org/10.1007/BF01248253

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01248253

Key words

Navigation