Skip to main content
Log in

Food chains in the chemostat: Relationships between mean yield and complex dynamics

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Atritrophic food-chain chemostat model composed of a prey with Monod-type nutrient uptake, a Holling Type II predator and a Holling Type II exploited superpredator is considered in this paper. The bifurcations of the model show that dynamic complexity first increases and then decreases with the nutrient supplied to the bottom of the food chain. Extensive simulations prove that the same holds for food yield, i.e., there exists an optimum nutrient supply which maximizes mean food yield. Finally, a comparative analysis of the results points out that the optimum nutrient supply practically coincides with the nutrient supply separating chaotic dynamics from high-frequency cyclic dynamics. This reinforces the idea, already known for simpler models, that food yield maximization requires that the system behaves on the edge of chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P. A. (1993). Effect of increased productivity on the abundances of trophic levels. Amer. Nat. 141, 351–371.

    Article  Google Scholar 

  • Abrams, P. A. and J. D. Roth (1994a). The effects of enrichment of three-species food chains with non-linear functional responses. Ecology 75, 1118–1130.

    Article  Google Scholar 

  • Abrams, P. A. and J. D. Roth (1994b). The responses of unstable food chains to enrichment. Evol. Ecol. 8, 150–171.

    Article  Google Scholar 

  • Allen, J. C., W. M. Schaffer and D. Rosko (1993). Chaos reduces species extinction by amplifying local population noise. Nature 364, 229–232.

    Article  Google Scholar 

  • Bader, F. G., H. M. Tsuchiya and A. G. Fredrickson (1976). Grazing of ciliates on bluegreen algae: effects of ciliate encystment and related phenomena. Biotechnol. Bioeng. 18, 311–332.

    Article  Google Scholar 

  • Boer, M. P., B. W. Kooi and S.A. Kooijman (1998). Food chain dynamics in the chemostat. Math. Biosci. in press.

  • Butler, G. J., S. B. Hsu and P. Waltman (1983). Coexistence of competing predators in a chemostat. J. Math. Biol. 17, 133–151.

    Article  MathSciNet  Google Scholar 

  • Canale, R. P. (1969). Predator-prey relationships in a model for the activated process. Biotechnol. Bioeng. 11, 887–907.

    Article  Google Scholar 

  • Canale, R. P. (1970). An analysis of models describing predator-prey interaction. Biotechnol. Bioeng. 12, 353–378.

    Article  Google Scholar 

  • Canale, R. P., T. D. Lustig, P. M. Kehrberger and J. E. Salo (1973). Experimental and mathematical modeling studies of protozoan predation on bacteria. Biotechnol. Bioeng. 15, 707–728.

    Article  Google Scholar 

  • Champneys, A. R. and Yu. A. Kuznetsov (1994). Numerical detection and continuation of codimension-two homoclinic bifurcations. Int. J. Bif. Chaos 4, 785–822.

    Article  MathSciNet  Google Scholar 

  • Cunningham, A. and R. M. Nisbet (1983). Transients and oscillations in continuos culture, in Mathematics in Microbiology, M. Bazin (Ed.), London: Academic Press, pp. 77–103.

    Google Scholar 

  • De Feo, O. and S. Rinaldi (1997). Yield and dynamics of tritrophic food chains. Amer. Nat. 150, 328–345.

    Article  Google Scholar 

  • De Feo, O. and S. Rinaldi (1998). Singular homoclinic bifurcations in tri-trophic food chains. Math. Biosci. in press.

  • Doedel, E. and J. Kernévez (1986). AUTO: software for continuation problems in ordinary differential equations with applications. California Institute of Technology Technical Report, Applied Mathematics, CALTEC, Pasadena.

    Google Scholar 

  • Drake, J. F. and H. M. Tsuchiya (1976). Predation on Escherichia coli by Colpoda stenii. Appl. Environ. Microbiol. 31, 870–874.

    Google Scholar 

  • Ferrière, R. and M. Gatto (1993). Chaotic population dynamics can result from natural selection. Proc. Roy. Soc. Lond. B251, 33–38.

    Google Scholar 

  • Gilpin, M. E. (1972). Enriched predator-prey systems: theoretical stability. Science 177, 902–904.

    Google Scholar 

  • Gragnani, A. and S. Rinaldi (1995). A universal bifurcation diagram for seasonally perturbed predator-prey models. Bull. Math. Biol. 57, 701–712.

    Google Scholar 

  • Guckenheimer, J. and P. Holmes (1983). Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, New York: Springer.

    Google Scholar 

  • Hastings, A. and T. Powell (1991). Chaos in a three-species food chain. Ecology 72, 896–903.

    Article  Google Scholar 

  • Hogeweg, P. and B. Hesper (1978). Interactive instruction on population interaction. Comp. Biol. and Med. 8, 319–327.

    Article  Google Scholar 

  • Jost, J. L., J. F. Drake, A. G. Fredrickson and H. M. Tsuchiya (1973). Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter vinelandii, and glucose in a minimal medium. J. Bacteriol. 113, 834–840.

    Google Scholar 

  • Kauffman, S. A. (1993). Origin of Order: Self Organization and Selection in Evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Klebanoff, A. and A. Hastings (1994). Chaos in three-species food chains. J. Math. Biol. 32, 427–451.

    Article  MathSciNet  Google Scholar 

  • Kooi, B. W., M. P. Boer and S. A. Kooijman (1997). Complex dynamic behaviour of autonomous microbial food chains. J. Math. Biol. 36, 24–40.

    Article  MathSciNet  Google Scholar 

  • Kot, M., G. S. Sayler and T. W. Schultz (1992). Complex dynamics in a model microbial system. Bull. Math. Biol. 54, 619–648.

    Article  Google Scholar 

  • Kuznetsov, Yu. A. (1995). Elements of Applied Bifurcation Theory, New York: Springer.

    Google Scholar 

  • Kuznetsov, Yu. A., S. Muratori and S. Rinaldi (1992). Bifurcations and chaos in a periodic predator-prey model. Int. J. Bif. Chaos 2, 117–128.

    Article  MathSciNet  Google Scholar 

  • Kuznetsov, Yu. A. and S. Rinaldi (1996). Remarks on food chain dynamics. Math. Biosci. 134, 1–33.

    Article  MathSciNet  Google Scholar 

  • May, R. M. (1972). Limit cycles in predator-prey communities. Science 177, 900–902.

    Google Scholar 

  • McCann, K. and P. Yodzis (1994). Biological conditions for chaos in a three-species food chain. Ecology 75, 561–564.

    Article  Google Scholar 

  • McCann, K. and P. Yodzis (1995). Bifurcation structure of three-species food chain model. Theoret. Pop. Biol. 48, 93–125.

    Article  Google Scholar 

  • Muratori, S. and S. Rinaldi (1992). Low-and high-frequency oscillations in threedimensional food chain systems, SIAM J. Appl. Math. 52, 1688–1706.

    Article  MathSciNet  Google Scholar 

  • Oksanen, L., S. D. Fretwell, J. Arruda and P. Niemela (1981). Exploitation ecosystems in gradients of primary productivity. Amer. Nat. 118, 240–261.

    Article  Google Scholar 

  • Pavlou, S. and I. G. Kevrekidis (1992). Microbial predation in a periodically operated chemostat: a global study of the interaction between natural and externally imposed frequencies. Math. Biosci. 108, 1–55.

    Article  MathSciNet  Google Scholar 

  • Rapp, P. E., I. D. Zimmerman, A. M. Albano, G. C. de Guzman and N. N. Greenbaum (1985). Dynamics of spontaneous neural activity in the simian motor cortex: the dimension of chaotic neurons. Phys. Lett. 110A, 335–338.

    Google Scholar 

  • Rinaldi, S., S. Muratori and Yu. A. Kuznetsov (1993). Multiple attractors, catastrophes and chaos in periodically forced predator-prey communities. Bull. Math. Biol. 55, 15–35.

    Article  Google Scholar 

  • Rosenzweig, M. L. (1971). Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387.

    Google Scholar 

  • Sarkar, A. K., D. Mitra, S. Ray and A. B. Roy (1991). Permanence and oscillatory co-existence of a detritus-based prey-predator model. Ecol. Model. 53, 147–156.

    Article  Google Scholar 

  • Scheffer, M. (1991). Should we expect strange attractors behind plankton dynamics and if so, should we bother? J. Plank. Res. 13, 1291–1305.

    Google Scholar 

  • Smith, H. L. and P. Waltman (1995). The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge: Cambridge University Press.

    Google Scholar 

  • Waltman, P. (1983). Competition Models in Population Biology, Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Google Scholar 

  • West, B. J. and A. L. Goldberger (1987). Physiology in fractal dimensions. Amer. Sci. 75, 354–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rinaldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gragnani, A., De Feo, O. & Rinaldi, S. Food chains in the chemostat: Relationships between mean yield and complex dynamics. Bull. Math. Biol. 60, 703–719 (1998). https://doi.org/10.1006/bulm.1997.0039

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.1997.0039

Keywords

Navigation