Skip to main content

Advertisement

Log in

Human autologous mesenchymal stem cells with extracorporeal shock wave therapy for nonunion of long bones

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background: Currently, the available treatments for long bone nonunion (LBN) are removing of focus of infection, bone marrow transplantation as well as llizarov methods etc. Due to a high percentage of failures, the treatments are complex and debated. To develop an effective method for the treatment of LBN, we explored the use of human autologous bone mesenchymal stems cells (hBMSCs) along with extracorporeal Shockwave therapy (ESWT).

Materials and Methods: Sixty three patients of LBN were subjected to ESWT treatment and were divided into hBMSCs transplantation group (Group A, 32 cases) and simple ESWT treatment group (Group B, 31 cases).

Results: The patients were evaluated for 12 months after treatment. In Group A, 14 patients were healed and 13 showed an improvement, with fracture healing rate 84.4%. In Group B, eight patients were healed and 13 showed an improvement, with fracture healing rate 67.7%. The healing rates of the two groups exhibited a significant difference (P < 0.05). There was no significant difference for the callus formation after 3 months treatment (P > 0.05). However, the callus formation in Group A was significantly higher than that in the Group B after treatment for 6, 9, and 12 months (P < 0.05).

Conclusion: Autologous bone mesenchymal stems cell transplantation with ESWT can effectively promote the healing of long bone nonunions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borrellij Jr., Prickett WD, Ricci WM. Treatment of nonunions and osseous defects with bone graft and calcium sulfate. Clin Orthop Relat Res 2003;411:245–54.

    Article  Google Scholar 

  2. Canale ST, Beaty JH. Campbell’s Operative Orthopaedics. 11th ed. St. Louis: Mosby, An Imprint of Elsevier; 2008. p. 3976.

    Google Scholar 

  3. Ogden JA, Alvarez RG, Levitt R, Marlow M. Shock wave therapy (Orthotripsy) in musculoskeletal disorders. Clin Orthop Relat Res 2001;387:22–40.

    Article  Google Scholar 

  4. Gollwitzer H, Diehl P, von Korff A, Rahlfs VVV, Gerdesmeyer L. Extracorporeal shock wave therapy for chronic painful heel syndrome: A prospective, double blind, randomized trial assessing the efficacy of a new electromagnetic shock wave device. J Foot Ankle Surg 2007;46:348–57.

    Article  PubMed  Google Scholar 

  5. Ludwig J, Lauber S, Lauber HJ, Dreisilker U, Raedel R, Hotzinger H. High-energy shock wave treatment of femoral head necrosis in adults. Clin Orthop Relat Res 2001;387:119–26.

    Article  Google Scholar 

  6. Wang CJ, Wang FS, Huang CC, Yang KD, Weng LH, Huang HY. Treatment for osteonecrosis of the femoral head: Comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am 2005;87:2380–7.

    Article  PubMed  Google Scholar 

  7. Nuttall ME, Patton AJ, Olivera DL, Nadeau DP, Gowen M. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: Implications for osteopenic disorders. J Bone Miner Res 1998;13:371–82.

    Article  CAS  PubMed  Google Scholar 

  8. Kramer PR, Nares S, Kramer SF, Grogan D, Kaiser M. Mesenchymal stem cells acquire characteristics of cells in the periodontal ligament in vitro. J Dent Res 2004;83:27–34.

    Article  CAS  PubMed  Google Scholar 

  9. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 2006;88 Suppl 1:322–7.

    Article  PubMed  Google Scholar 

  10. Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells 2014;6:144–52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Seebach C, Henrich D, Tewksbury R, Wilhelm K, Marzi I. Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int 2007;80:294–300.

    Article  CAS  PubMed  Google Scholar 

  12. Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br 2005;87:896–902.

    Article  CAS  PubMed  Google Scholar 

  13. Vulpiani MC, Vetrano M, Conforti F, Minutolo L, Trischitta D, Furia JP, et al. Effects of extracorporeal shock wave therapy on fracture nonunions. Am J Orthop (Belle Mead NJ) 2012;41:E122–7.

    Google Scholar 

  14. Silk ZM, Alhuwaila RS, Calder JD. Low-energy extracorporeal shock wave therapy to treat lesser metatarsal fracture nonunion: Case report. Foot Ankle Int 2012;33:1128–32.

    Article  PubMed  Google Scholar 

  15. Alvarez RG, Cincere B, Channappa C, Langerman R, Schulte R, Jaakkola J, et al. Extracorporeal shock wave treatment of non- or delayed union of proximal metatarsal fractures. Foot Ankle Int 2011;32:746–54.

    Article  PubMed  Google Scholar 

  16. Zelle BA, Gollwitzer H, Zlowodzki M, Biihren V. Extracorporeal shock wave therapy: Current evidence. J Orthop Trauma 2010;24 Suppl 1:S66–70.

    Article  PubMed  Google Scholar 

  17. Eister EA, Stojadinovic A, Forsberg J, Shawen S, Andersen RC, Schaden W. Extracorporeal shock wave therapy for nonunion of the tibia. J Orthop Trauma 2010;24:133–41.

    Article  Google Scholar 

  18. Cacchio A, De Blasis E, Rosa F, De Blasis D, de Paulis F, Santilli V, et al. Response of bone turnover biochemical markers to extracorporeal shock wave therapy in the management of long-bone nonunions. Clin Chem 2009;55:195–6.

    Article  CAS  PubMed  Google Scholar 

  19. Perkins R, Skirving AP. Callus formation and the rate of healing of femoral fractures in patients with head injuries. J Bone Jo int Surg Br 1987;69:521–4.

    Article  CAS  Google Scholar 

  20. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987;20:263–72.

    CAS  PubMed  Google Scholar 

  21. Henschler R, Deak E, Seifried E. Homing of mesenchymal stem cells. Transfus Med Hemother 2008;35:306–12.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hernigou P, Mukasa MM, Fillipini P. Autologous bone-marrow transplantation for nonunions. Eur Musculoskelet Rev 2009;4:70–2.

    Google Scholar 

  23. Haupt G, Haupt A, Ekkernkamp A, Gerety B, Chvapil M. Influence of shock waves on fracture healing. Urology 1992;39:529–32.

    Article  CAS  PubMed  Google Scholar 

  24. Wang FS, Yang KD, Chen RF, Wang CJ, Sheen-Chen SM. Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-betal. J Bone Joint Surg Br 2002;84:457–61.

    Article  CAS  PubMed  Google Scholar 

  25. McClure SR, Van Sickle D, White MR. Effects of extracorporeal shock wave therapy on bone. Vet Surg 2004;33:40–8.

    Article  PubMed  Google Scholar 

  26. Chen HS, Chen LM, Huang TW. Treatment of painful heel syndrome with shock waves. Clin Orthop Relat Res 2001;387:41–6.

    Article  Google Scholar 

  27. Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, Sun YC, et al. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-lalpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 2004;279:10331–7.

    Article  CAS  PubMed  Google Scholar 

  28. Haake M, Wessel C, Wilke A. Effects of extracorporeal shock waves (ESW) on human bone marrow cell cultures. Biomed Tech (Berl) 1999;44:278–82.

    Article  CAS  Google Scholar 

  29. Martini L, Fini M, Giavaresi G, Torricelli P, de Pretto M, Rimondini L, et al. Primary osteoblasts response to shock wave therapy using different parameters. Artif Cells Blood Substit Immobil Biotechnol 2003;31:449–66.

    Article  CAS  PubMed  Google Scholar 

  30. Ogden JA, Alvarez RG, Levitt RL, Johnson JE, Marlow ME. Electrohydraulic high-energy shock-wave treatment for chronic plantar fasciitis. J Bone Joint Surg Am 2004;86-A:2216–28.

    Article  Google Scholar 

  31. Wang FS, Yang KD, Kuo YR, Wang CJ, Sheen-Chen SM, Huang HC, et al. Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 2003;32:387–96.

    Article  CAS  PubMed  Google Scholar 

  32. Chen YJ, Wurtz T, Wang CJ, Kuo YR, Yang KD, Huang HC, et al. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res 2004;22:526–34.

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi K, Yamazaki M, Saisu T, Nakajima A, Shimizu S, Mitsuhashi S, et al. Gene expression for extracellular matrix proteins in shockwave-induced osteogenesis in rats. Calcif Tissue Int 2004;74:187–93.

    Article  CAS  PubMed  Google Scholar 

  34. Sharma S, Garg NK, Veliath AJ, Subramanian S, Srivastava KK. Percutaneous bone-marrow grafting of osteotomies and bony defects in rabbits. Acta Orthop Scand 1992;63:166–9.

    Article  CAS  PubMed  Google Scholar 

  35. Basbozkurt M, Kurklu M, Yurttas Y, Demiralp B, Koca K, Kilic C, et al. Ilizarov external fixation without removal of plate or screws: Effect on hypertrophic and oligotrophic nonunion of the femoral shaft with plate failure. J Orthop Trauma 2012;26:e123–8.

    Article  PubMed  Google Scholar 

  36. Pihlajamaki HK, Salminen ST, Böstman OM. The treatment of nonunions following intramedullary nailing of femoral shaft fractures. J Orthop Trauma 2002;16:394–402.

    Article  PubMed  Google Scholar 

  37. Le Nail LR, Stanovici J, Fournier J, Splingard M, Domenech J, Rosset P. Percutaneous grafting with bone marrow autologous concentrate for open tibia fractures: Analysis of forty three cases and literature review. Int Orthop 2014;38:1845–53.

    Article  PubMed  Google Scholar 

  38. Gao KD, Huang JH, Tao J, Li F, Gao W, Li HQ, et al. Management of femoral diaphyseal nonunion after nailing with augmentative locked plating and bone graft. Orthop Surg 2011;3:83–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Allende C, Paz A, Altube G, Boccolini H, Malvarez A, Allende B. Revision with plates of humeral nonunions secondary to failed intramedullary nailing. Int Orthop 2014;38:899–903.

    Article  PubMed  Google Scholar 

  40. Birjandinejad A, Ebrahimzadeh MH, Ahmadzadeh-Chabock H. Augmentation plate fixation for the treatment of femoral and tibial nonunion after intramedullary nailing. Orthopedics 2009;32:409.

    Article  PubMed  Google Scholar 

  41. Niu Y, Bai Y, Xu S, Liu X, Wang P, Wu D, et al. Treatment of lower extremity long bone nonunion with expandable intramedullary nailing and autologous bone grafting. Arch Orthop Trauma Surg 2011;131:885–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng-Yan Xing.

Additional information

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, L., Ma, XL., Jiang, C. et al. Human autologous mesenchymal stem cells with extracorporeal shock wave therapy for nonunion of long bones. IJOO 50, 543–550 (2016). https://doi.org/10.4103/0019-5413.189602

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/0019-5413.189602

Key words

MeSH terms

Navigation