Skip to main content
Log in

Tunable Plasmonic Quantum Light Source with Silver Nanoclusters on a Silver Surface

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Scanning tunneling luminescence (STL) can be used to investigate the optical properties of nanostructures with high spatial resolution beyond the diffraction limit of light. To get appropriate STL spectra, one needs to modify the tip repeatedly. However, such irreversible tip modification often leads to very unstable tips. Here, by using a scanning tunneling microscope (STM) tip, we demonstrate that STL spectra are tunable via silver nanocluster arrays fabricated directly on a silver surface. The silver nanoclusters are created by transferring silver atoms from the silver tip to the silver surface under STM. We found that the STL spectra were enhanced (suppressed) at higher (lower) energy on the clusters and that they showed opposite behaviors between the nanoclusters. Without relying on the irreversible tip shape modification, our findings indicate that we can tune the STL spectra simply by moving the STM tip over the nanoclusters. Our method can be used to provide a tunable light source for systematic nano-optical experiments and for nanoscale optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kuhnke, C. Große, P. Merino and K. Kern, Chem. Rev. 117, 5174 (2017).

    Article  Google Scholar 

  2. E. C. Neyts, K. Ostrikov, M. K. Sunkara and A. Bogaerts, Chem. Rev. 115, 13408 (2015).

    Article  Google Scholar 

  3. Y. Zhang et al., Chem. Rev. 118, 2927 (2018).

    Article  Google Scholar 

  4. R. Berndt, J. K. Gimzewski and P. Johansson, Phys. Rev. Lett. 67, 3796 (1991).

    Article  ADS  Google Scholar 

  5. R. Berndt and J. K. Gimzewski, Phys. Rev. B 48, 4746 (1993).

    Article  ADS  Google Scholar 

  6. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).

    Article  ADS  Google Scholar 

  7. X. H. Qiu, G. V. Nazin and W. Ho, Science 299, 542 (2003).

    Article  ADS  Google Scholar 

  8. Z. C. Dong et al., Nat. Photonics 4, 50 (2010).

    Article  ADS  Google Scholar 

  9. R. Zhang et al., Nature 498, 82 (2013).

    Article  ADS  Google Scholar 

  10. C. Chen, C. A. Bobisch and W. Ho, Science 325, 981 (2009).

    Article  ADS  Google Scholar 

  11. Y. Zhang et al., Nature 531, 623 (2016).

    Article  ADS  Google Scholar 

  12. E. Kazuma et al., Science 360, 521 (2018).

    Article  ADS  Google Scholar 

  13. K. Kaiser, L. Gross and F. Schulz, ACS Nano 13, 6947 (2019).

    Article  Google Scholar 

  14. C. Chen et al., Phys. Rev. Lett. 105, 217402 (2010).

    Article  ADS  Google Scholar 

  15. C. Chen, N. Hayazawa and S. Kawata, Nat. Commun. 5, 3312 (2014).

    Article  ADS  Google Scholar 

  16. J. Aizpurua, S. P. Apell and R. Berndt, Phys. Rev. B 62, 2065 (2000).

    Article  ADS  Google Scholar 

  17. P. Johansson, Phys. Rev. B 58, 10823 (1998).

    Article  ADS  Google Scholar 

  18. S. Wu and D. L. Mills, Phys. Rev. B 65, 205420 (2002).

    Article  ADS  Google Scholar 

  19. D. L. Mills, Phys. Rev. B 65, 125419 (2002).

    Article  ADS  Google Scholar 

  20. A. Downes, M. E. Taylor and M. E. Welland, Phys. Rev. B 57, 6706 (1998).

    Article  ADS  Google Scholar 

  21. H. Imada et al., Phys. Rev. Lett. 119, 013901 (2017).

    Article  ADS  Google Scholar 

  22. A. Yu, S. Li, G. Czap and W. Ho, Nano Lett. 16, 5433 (2016).

    Article  ADS  Google Scholar 

  23. P. Myrach, N. Nilius and H. J. Freund, Phys. Rev. B 83 (2011).

  24. R. Berndt, J. K. Gimzewski and P. Johansson, Phys. Rev. Lett. 71, 3493 (1993).

    Article  ADS  Google Scholar 

  25. B. C. Stipe, M. A. Rezaei and W. Ho, Rev. Sci. Instrum. 70, 137 (1999).

    Article  ADS  Google Scholar 

  26. G. Schull, T. Frederiksen, M. Brandbyge and R. Berndt, Phys. Rev. Lett. 103, 206803 (2009).

    Article  ADS  Google Scholar 

  27. Our finding might be interpreted as wavelength-dependent spectral weight transfer. However, spectral weight transfer may not be good enough to describe the effect of nanoclusters because we could not observe the same amounts of enhancement/suppression in STL intensities at specific wavelengths from the same nanoclusters with different tips.

  28. K. C. Tang et al., J. Am. Chem. Soc. 133, 17738 (2011).

    Article  Google Scholar 

  29. M. Dong et al., Chem. Comm. 51, 12981 (2015).

    Article  Google Scholar 

  30. D. Martindale and A. W. Paeth, Graphics Gems II (Academic Press, Boston, 1991).

    Google Scholar 

  31. X. Duan, S. Kamin and N. Liu, Nat. Commun. 8, 1 (2017).

    Article  ADS  Google Scholar 

  32. X. Wang et al., ACS Appl. Mater. Interfaces 10, 1422 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute for Basic Science (Grant No. IBS-R014-D1) and by a National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (Grant No. 2018R1A5A6075964, 2020R1F1A1076401).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-Hwan Kim or Ungdon Ham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S., Kim, TH. & Ham, U. Tunable Plasmonic Quantum Light Source with Silver Nanoclusters on a Silver Surface. J. Korean Phys. Soc. 77, 133–137 (2020). https://doi.org/10.3938/jkps.77.133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.133

Keywords

Navigation