Skip to main content
Log in

The Charge Density Distribution with a Non-Local Potential on 16O, 40Ca, and 208Pb Nuclei

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Using a non-local nuclear potential in a separable form, as suggested by Perey and Buck, we solve the Schrödinger equation for all bound states for 16O, 40Ca, and 208Pb nuclei. We obtain binding energies and radial wave functions for a single particle. Moreover, these calculations derived from a non-local nuclear potential are compared with those of a local potential suggested by Shlomo and Bertsch. With the binding energies and the radial wave functions, we extract the point proton, the point neutron, the charge density distributions and their RMS radii and compare them with the experimental data. The point proton, the point neutron, and the charge density distributions obtained by using the non-local potential are pushed outward compared with those obtained by using the local potential due to the non-local effect. In addition, this effect can be seen in the RMS radii extracted from the point proton, the point neutron, and the charge density distributions, which are repulsive and larger than those obtained using the local potential. Finally, our calculations for the RMS radii, which were done using the non-local potential, agree well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Negele, Phys. Rev. C 9, 1054 (1974).

    Article  ADS  Google Scholar 

  2. V. K. Mishra, G. Fai, P. C. Tandy and M. R. Frank, Phys. Rev. C 46, 1143 (1992).

    Article  ADS  Google Scholar 

  3. W. G. Love, Nucl. Phys. A 312, 160 (1978).

    Article  ADS  Google Scholar 

  4. W.-Y. So and B.-T. Kim, J. Korean. Phys. Soc. 30, 175 (1997).

    Google Scholar 

  5. F. Perey and B. Buck, Nucl. Phys. 32, 353 (1962).

    Article  Google Scholar 

  6. M. A. Franey and P. J. Ellis, Phys. Rev. C 23, 787 (1981).

    Article  ADS  Google Scholar 

  7. S. Shlomo and G. Bertsch, Nucl. Phys. A 243, 507 (1975).

    Article  ADS  Google Scholar 

  8. W. Y. So et al., J. Korean. Phys. Soc. 62, 1703 (2013).

    Article  Google Scholar 

  9. H. G. Cho et al., Chin. J. Phys. 52, 729 (2014).

    Google Scholar 

  10. H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958).

    Article  ADS  Google Scholar 

  11. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971), Chap. 4.

    Google Scholar 

  12. B. A. Brown, S. E. Massent and P. E. Hodgson, J. Phys. G 5, 1655 (1979).

    Article  ADS  Google Scholar 

  13. W. A. Richter and B. A. Brown, Phys. Rev. C 67, 034317 (2003).

    Article  ADS  Google Scholar 

  14. D. Lonardoni, A. Lovato, S. C. Pieper and R. B. Wiringa, Phys. Rev. C 96, 024326 (2017).

    Article  ADS  Google Scholar 

  15. A. B. Jones and B. A. Brown, Phys. Rev. C 90, 067304 (2014).

    Article  ADS  Google Scholar 

  16. S.-G. Zhou, J. Meng and P. Ring, Phys. Rev. C 68, 034323 (2003).

    Article  ADS  Google Scholar 

  17. K. Saito, H. Kouno, K. Tsushima and A. W. Thomasg, Eur. Phys. J. A 26, 159 (2005).

    Article  ADS  Google Scholar 

  18. C. A. Bertulani, J. Phys. G 34, 315 (2007).

    Article  ADS  Google Scholar 

  19. V. Lapoux et al., Phys. Rev. Lett. 117, 052501 (2016).

    Article  ADS  Google Scholar 

  20. H. de Vries, C. W. de Jager and C. de Vries, At. Data. Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  21. W. R. Gibbs and J.-P. Dedonder, Phys. Rev. C 46, 1825 (1992).

    Article  ADS  Google Scholar 

  22. PREX Collaboration, Phys. Rev. Lett. 108, 112502 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by 2018 Research Grant from Kangwon National University (No. 620180023) and by the National Research Foundation of Korea (Grant Nos. NRF-2016R1C1B1012874, NRF-2017R1E1A1A010 74023, NRF-2018R1D1A1B07045915, and NRF-2018R1 A5A1025563).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

So, W.Y., Kim, T.H., Cheoun, MK. et al. The Charge Density Distribution with a Non-Local Potential on 16O, 40Ca, and 208Pb Nuclei. J. Korean Phys. Soc. 74, 998–1003 (2019). https://doi.org/10.3938/jkps.74.998

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.998

Keywords

Navigation