Skip to main content
Log in

Cube-shaped Triethylene Glycol-coated Ni−Mn Ferrite Nanoparticles for use as T2 Contrast Agents in Magnetic Resonance Imaging

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Nickel-manganese (Ni−Mn) ferrite nanoparticles were synthesized using the hydrothermal technique and were coated with the biocompatible material of triethylene glycol (TEG) during the synthetic process. The chemical composition of the particles was Ni0.5Mn0.5Fe2O4 based on the use of inductively coupled plasma (ICP). The shapes of the particles were cubic in the TEM images and had an average side length of 68 nm. The XRD patterns confirmed the inverse spinel structure of these particles. The FTIR spectra also showed the firm coating of the TEG on the surfaces of these particles. The saturation magnetization of the particles was observed to be 66 emu/g with a coercive force of 150 Oe. The T1 and T2 relaxivities of the hydrogen protons in the aqueous dispersion of the particles were 0.32 and 15.59 mM−1s−1, respectively. The ratio of r2/r1 was 48.72, thus indicating that the Ni0.5Mn0.5Fe2O4 nanoparticles are applicable as high-efficacy T2 contrasts agents in MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Nutzenadel, A. Züttel, D. Chartouni, G. Schmid and L. Schlapbach, Eur. Phys. J. D 8, 245 (2000).

    Article  ADS  Google Scholar 

  2. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).

    Article  Google Scholar 

  3. A. K. Singh, Adv. Powder Tech. 21, 609 (2010).

    Article  Google Scholar 

  4. M. Horie, K. Fujita, H. Kato, S. Endoh, K. Fujita et al., Metallomics 4, 350 (2012).

    Article  Google Scholar 

  5. D. Guo, G. Xie and J. Luo, J. Phys. D: Appl. Phys. 47, 013001 (2014).

    Article  ADS  Google Scholar 

  6. I. Rhee, New Phys. Sae Mulli 65, 411 (2015).

    Article  Google Scholar 

  7. J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang et al., Nat. Med. 13, 95 (2007).

    Article  Google Scholar 

  8. R. Qiao, Q. Jia, S. Huwel, R. Xia, T. Liu et al., J. ACS Nano 6, 3304 (2012).

    Article  Google Scholar 

  9. I. Rhee and C. Kim, J. Magn. Magn. Mater. 261, 410 (2003).

    Article  ADS  Google Scholar 

  10. T. Ahmad, H. Bae, Y. Iqbal, I. Rhee, S. Hong et al., J. Magn. Magn. Mater. 381, 151 (2015).

    Article  ADS  Google Scholar 

  11. L. Yang, L. Ma, J. Xin, A. Li and C. Sun, Chem. Mater. 29, 3038 (2017).

    Article  Google Scholar 

  12. T. Ahmad, I. Rhee, S. Hong, Y. Chang and J. Lee, J. Nanosci. Nanotechnol. 11, 5645 (2011).

    Article  Google Scholar 

  13. A. Ahmad, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 447, 42 (2018).

    Article  ADS  Google Scholar 

  14. G. Mathubala, A. Manikandan, S. A. Antony and P. Ramar, J. Mol. Struct. 1113, 79 (2016).

    Article  ADS  Google Scholar 

  15. M. Menelaou, K. Georgoula, K. Simeonidis and C. Dendrinou-Samara, Dalton Trans. 43, 3626 (2014).

    Article  Google Scholar 

  16. A. Narayanasamy and N. Sivakumar, Bull. Mater. Sci. 31, 373 (2005).

    Article  Google Scholar 

  17. J. Azadmanjiri, Mater. Chem. Phys. 109, 109 (2008).

    Article  Google Scholar 

  18. M. Sadakane, T. Horiuchi, N. Kato, C. Takahashi and W. Ueda, Chem. Mater. 19, 5779 (2007).

    Article  Google Scholar 

  19. H. E. Zhang, B. F. Zhang, G. F. Wang and X. H. Dong, J. Magn. Magn. Mater. 312, 126 (2007).

    Article  ADS  Google Scholar 

  20. T. G. Altincekic, I. Boz, A. Baykal, S. Kazan, R. Topkaya et al., J. Alloys Compd. 493, 493 (2010).

    Article  Google Scholar 

  21. A. Ahmad, H. Bae and I. Rhee, AIP Adv. 8, 055019 (2018).

    Article  ADS  Google Scholar 

  22. C. Felton, A. Karmakar, Y. Gartia, P. Ramidi, A. S. Biris et al., Drug Metab Rev. 46, 142 (2014).

    Article  Google Scholar 

  23. Z. R. Stephen, F. M. Kievit and M. Zhang, Mater. Today (Kidlington). 14, 330 (2011).

    Article  Google Scholar 

  24. A. Senpan, S. D. Caruthers, I. Rhee, N. A. Mauro, D. Pan et al., ACS Nano 3, 3917 (2009).

    Article  Google Scholar 

  25. Z. Shen, A. Wu and X. Chen, Mol. Pharmaceutics 14, 1352 (2017).

    Article  Google Scholar 

  26. T. Ahmad, H. Bae, I. Rhee, Y. Chang, J. Lee et al., Curr. Appl. Phys. 12, 969 (2012).

    Article  ADS  Google Scholar 

  27. Y. Okuhata, Adv. Drug Delivery Rev. 37, 121 (1999).

    Article  Google Scholar 

  28. A. Tanveer, Y. Iqbal, H. Bae, I. Rhee et al., J. Korean Phys. Soc. 62, 1696 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, H., Bae, H., Kim, C. et al. Cube-shaped Triethylene Glycol-coated Ni−Mn Ferrite Nanoparticles for use as T2 Contrast Agents in Magnetic Resonance Imaging. J. Korean Phys. Soc. 74, 48–52 (2019). https://doi.org/10.3938/jkps.74.48

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.48

Keywords

Navigation