Skip to main content
Log in

Design and Fabrication of a Thermoelectric Generator Based on BiTe Legs to power Wearable Device

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

To attain power generation with body heat, the thermal resistance matched design of the thermoelectric generator was the principal factor which was not critical in the case of thermoelectric generator for the waste heat generation. The dimension of thermoelectric legs and the number of thermoelectric leg-pairs dependent output power performances of the thermoelectric generator on the human wrist condition was simulated using 1-dimensional approximated heat flow equations with the temperature dependent material coefficients of the constituent materials and the dimension of the substrate. With the optimum thermoelectric generator design, thermoelectric generator modules were fabricated by using newly developed fabrication processes, which is mass production possible. The electrical properties and the output power characteristics of the fabricated thermoelectric modules were characterized by using a home-made test set-up. The output voltage of the designed thermoelectric generator were a few tens of millivolts and its output power was several hundreds of microwatts under the conditions at the human wrist. The measured output voltage and power of the fabricated thermoelectric generator were slightly lower than those of the designed thermoelectric generator due to several reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J-H. Choi, J. Park, H. D. Park and O-G. Min, ETRI J. 39, 202 (2017).

    Article  Google Scholar 

  2. M. T. Dunhama, M. T. Barako, S. LeBlanc, M. Asheghi, B. Chen and K. E. Goodson, Energy 93, 2006 (2015).

    Article  Google Scholar 

  3. S. Song, K. H. Chang, C. Yoon and J-M. Chung, ETRI J. 40, 7 (2018).

    Article  Google Scholar 

  4. J. A. Paradiso and T. Starner, IEEE Pervasice Comput. 4, 16 (2005).

    Google Scholar 

  5. S. Roundy and P. K. Wright, Smart Mater. Struct. 13, 1131 (2004).

    Article  ADS  Google Scholar 

  6. A. R. M. Siddique, R. Rabari, S. Mahmud and B.V. Heyst, Energy 115, 1081 (2018).

    Article  Google Scholar 

  7. J. Kim, J. Korean Phys. Soc. 50, 168 (2007).

    Google Scholar 

  8. S. E. Moon, S. Q. Lee, S-K. Lee, Y-G. Lee, Y. S. Yang, K.-H. Park et al., ETRI J. 31, 688 (2009).

    Article  Google Scholar 

  9. J. Kim, S-J. Kim, J. Y. Kwon, W. Choi, H. J. Kim, T. Kim et al., J. Korean Phys. Soc. 68, 1472 (2016).

    Article  ADS  Google Scholar 

  10. D. Champier, Energy Conversion and Management 140, 167 (2017).

    Article  Google Scholar 

  11. M-K. Kim, M-S. Kim, S. Lee, C. Kim and Y-J. Kim, Smart Mater. Struct. 23, 105002–1 (2014).

    Article  ADS  Google Scholar 

  12. S. J. Kim, H. Choi, Y. Kim, J. H. We, J. S. Shin, H. E. Lee et al., Nano Energy 31, 258 (2017).

    Article  Google Scholar 

  13. J-H. Bahk, H. Fang, K. Yazawa and A. Shakouri, J. Mater. Chem. C 3, 10362 (2015).

    Article  Google Scholar 

  14. M. Hyland, H. Hunter, J. Liu, E. Veety and D. Vashaee, Applied Energy 182, 518 (2016).

    Article  Google Scholar 

  15. K. Pietrzyk, J. Soares, B. Ohara and H. Lee, Applied Energy 183, 218 (2016).

    Article  Google Scholar 

  16. R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof and R. Mertens, Solid-State Electronics 53, 684 (2009).

    Article  ADS  Google Scholar 

  17. X. Hu, H. Takazawa, K. Nagase, M. Ohta and A. Yamamoto, Journal of ELECTRONIC MATERIALS 44, 3637 (2015).

    Article  ADS  Google Scholar 

  18. F. Suarez, A. Nozariasbmarz, D. Vashaee and M. C. Ozturk, Energy Environ. Sci. 9, 2099 (2016).

    Article  Google Scholar 

  19. R. Mccarty, Journal of ELECTRONIC MATERIALS 42, 1504 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Goupil, W. Seifert, K. Zabrocki, E. Muller and G. J. Snyder, Entropy 13, 1481 (2011).

    Article  ADS  Google Scholar 

  21. K. T. Settaluri, H. LO and R. J. Ram, Journal of ELECTRONIC MATERIALS 41, 984 (2012).

    Article  ADS  Google Scholar 

  22. J-P. Im, S. E. Moon and C-G. Lyuh, ETRI J. 38, 654 (2016).

    Google Scholar 

  23. Y. G. Lee, J. Kim, M-S. Kang, S-H. Baek, S. K. Kim, S-M. Lee et al., Adv. Mater. Technol. 1600292, 1 (2017).

    ADS  Google Scholar 

  24. J. Choi, Y. Jung, S. J. Yang, J. Y. Oh, J. Oh et al., ACS Nano 11, 7608 (2017).

    Article  Google Scholar 

  25. V. Leonov, IEEE Sensors Journal 13, 2284 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S.E., Kim, J., Lee, SM. et al. Design and Fabrication of a Thermoelectric Generator Based on BiTe Legs to power Wearable Device. J. Korean Phys. Soc. 73, 1760–1763 (2018). https://doi.org/10.3938/jkps.73.1760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.1760

Keywords

Navigation