Skip to main content
Log in

Enhanced specific capacitance of an electrophoretic deposited MnO2-carbon nanotube supercapacitor

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

MnO2 and MnO2-carbon nanotubes (CNT) composite films were grown directly on stainless- steel substrates using an electrophoretic process employing supercapacitor electrodes. An electrophoretic MnO2 film with a nanoplate-like structure was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Supercapacitor performance was studied using cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The specific capacitance (SC) of the electrophoretic MnO2 film was 60 F/g at 1 A/g, with a 38.33% retention of the initial SC values after 1000 cycles. The low SC value of the MnO2 films was attributed to the high series and charge-transfer resistances of 1.70 Ω and 3.20, respectively. The MnO2-CNT composites with the addition of 0.04, 0.06 and 0.08 g CNT to the electrophoretic MnO2 film were found to greatly increase the SC to 300, 206 and 169 F/g at 1 A/g, respectively. The series and charge-transferred resistances of MnO2-CNT composite films decreased to 1.38 - 1.52 Ω and 2.62 - 2.86 Ω, respectively. The SC improvement of the composite electrodes was attributed to presence of two active storage materials (MnO2 and CNT), a high film specific surface area and electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yan, Q. Wang, T. Wei and Z. Fan, Adv. Energy. Mater. 4, 1300816 (2014).

    Article  Google Scholar 

  2. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Article  ADS  Google Scholar 

  3. S. Zhao, T. Liu, D. Shi, Y. Zhang, W. Zeng, T. Li and B. Miao, Appl. Surf. Sci. 351, 862 (2015).

    Article  Google Scholar 

  4. Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, Adv. Mater. 23, 4828 (2011).

    Article  Google Scholar 

  5. D. S. Dhawale, A. Vinu and C. D. Lokhande, Electrochim. Acta 56, 9482 (2011).

    Article  Google Scholar 

  6. F. Zhang, F. Xiao, Z. H. Dong and W. Shi, Electrochim. Acta 114, 125 (2013).

    Article  Google Scholar 

  7. U. M. Patil, S. B. Kulkarni, V. S. Jamadade and C. D. Lokhande, J. Alloy. Comp. 509, 1677 (2011).

    Article  Google Scholar 

  8. Z. Chen, J. Li, Y. Chen, Y. Zhang, G. Xu, J. Yang and Y. Feng, Particuology 15, 27 (2014).

    Article  Google Scholar 

  9. Q. Wang, L. Jiao, H. Du, Y. Wang and H. Yuan, J. Power Sources 245, 101 (2014).

    Article  ADS  Google Scholar 

  10. X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang and L. Liang, J. Alloy. Comp. 593, 184 (2014).

    Article  Google Scholar 

  11. Y. Qiao, Y. Yu, Y. Jin, Y. B. Guan and C. H. Chen, Electrochim. Acta 132, 323 (2014).

    Article  Google Scholar 

  12. W. Wei, X. Cui, W. Chen and D. G. Ivey, Chem. Soc. Rev. 40, 1697 (2011).

    Article  Google Scholar 

  13. L. Chen, Z. Song, G. Liu, J. Qiu, C. Yu, J. Qin, L. Ma, F. Tian and W. Liu, J. Phys. Chem. Solids 74, 360 (2013).

    Article  ADS  Google Scholar 

  14. C. Y. Chen, S. C. Wang, C. Y. Lin, F. S. Chen and C. K. Lin, Ceram. Int. 35, 3469 (2009).

    Article  Google Scholar 

  15. M. S. Wu, C. J. Lin and C. L. Ho, Electrochim. Acta 81, 44 (2012).

    Article  Google Scholar 

  16. Y. Zhang, M. Dong, S. Zhu, C. Liu and Z. Wen, Mater. Res. Bull. 49, 448 (2014).

    Article  Google Scholar 

  17. S. Zhao, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng and M. S. Javed, Appl. Surf. Sci. 356, 259 (2015).

    Article  ADS  Google Scholar 

  18. H. Xia, Y. Wang, J. Lin and L. Lu, Nanoscale Res. Lett. 7, 1 (2012).

    Article  Google Scholar 

  19. J. Zhang, Y. Wang, J. Zang, G. Xin, Y. Yuan and X. Qu, Carbon 50, 5196 (2012).

    Article  Google Scholar 

  20. K. Shimamoto, K. Tadanaga and M. Tatsumisago, Electrochim. Acta 109, 651 (2013).

    Article  Google Scholar 

  21. T. Siriprachim, S. Phumying and S. Maensiri, J. Alloy. Comp. 677, 1 (2016).

    Article  Google Scholar 

  22. J. W. Wang, Y. Chen and B. Z. Chen, J. Alloy. Comp. 688, 184 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pawinee Klangtakai or Samuk Pimanpang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagsin, P., Klangtakai, P., Harnchana, V. et al. Enhanced specific capacitance of an electrophoretic deposited MnO2-carbon nanotube supercapacitor. Journal of the Korean Physical Society 71, 997–1005 (2017). https://doi.org/10.3938/jkps.71.997

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.997

Keywords

Navigation