Skip to main content
Log in

A new DG nanoscale TFET based on MOSFETs by using source gate electrode: 2D simulation and an analytical potential model

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper suggests and investigates a double-gate (DG) MOSFET, which emulates tunnel field effect transistors (M-TFET). We have combined this novel concept into a double-gate MOSFET, which behaves as a tunneling field effect transistor by work function engineering. In the proposed structure, in addition to the main gate, we utilize another gate over the source region with zero applied voltage and a proper work function to convert the source region from N+ to P+. We check the impact obtained by varying the source gate work function and source doping on the device parameters. The simulation results of the M-TFET indicate that it is a suitable case for a switching performance. Also, we present a two-dimensional analytic potential model of the proposed structure by solving the Poisson’s equation in x and y directions and by derivatives from the potential profile; thus, the electric field is achieved. To validate our present model, we use the SILVACO ATLAS device simulator. The analytical results have been compared with it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gholizadeh and S. E. Hosseini, IEEE Trans. Electron Devices 61, (2014).

    Google Scholar 

  2. D. B. Abdi and M. J. Kumar, Superlattices and Microstructures 86, 121 (2015).

    Article  ADS  Google Scholar 

  3. R. Vishnoi Rajat and M.J Kumar, IEEE Trans. Electron Devices} 61, 1936 (2014).

    Article  ADS  Google Scholar 

  4. S. Sarkhel, N. Bagga and S. K. Sarkar, J. Comput Electron 15, 104 (2015).

    Article  Google Scholar 

  5. S. Mookerjea, D. Mohata, T. Mayer, V. Narayanan, S. Datta, IEEE Electron Device Lett. 31, 564 (2010).

    Article  ADS  Google Scholar 

  6. M. Born, K. Bhuwalka, M. Schindler, U. Ubelein, M. Schmidt, T. Sulima and I. Eisele, In: Proceedings of 25th International Conference on Microelectronics, 14 (2006).

    Google Scholar 

  7. E. H. Toh, G. H. Wang, G. Samudra and Y.C. Yeo, J. Appl. Phys. 103, 104504 (2008).

    Article  ADS  Google Scholar 

  8. J. Wan, A. Zaslavsky, C. Le Royer and S. Cristoloveanu, IEEE Trans. Electron Devices 34, 24 (2013).

    Article  Google Scholar 

  9. R. Vishnoi and M. J. Kumar, IEEE Trans. Electron Devices 61, 2264 (2014).

    Article  Google Scholar 

  10. H. Toh, G. H. Wang, L. Chan, G. Samudra and Y. C. Yeo, Appl. Phys. Lett. 91, 243505 (2007).

    Article  ADS  Google Scholar 

  11. D. R. Lide, CRC Handbook on Chemistry and Physics, 89th ed, (New York, NY, USA: Taylor & Francis, 2008)

    Google Scholar 

  12. M. J. Kumar and S. Janardhanan, IEEE Trans. Electron Devices 60, 3285 (2013).

    Article  ADS  Google Scholar 

  13. D. B. Abdi and M. J. Kumar, IEEE Electron Device Lett. 35, (2014).

    Google Scholar 

  14. B. Ghosh and M. W. Akram, IEEE Electron Device Lett. 34, (2013).

    Google Scholar 

  15. Gnani E, Gnudi A, IEEE Trans Electron Device 59, 941 (2012).

    Article  ADS  Google Scholar 

  16. E. O. Kane, J. Phys. Chem. Solids 12, 181 (1960).

  17. Kane E.O., J. Appl. Phys. 32, 83 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  18. C. H. Shih and N. D. Chien, J. Appl. Phys. 113, 134507 (2013).

    Article  ADS  Google Scholar 

  19. A.S. Verhuslt, D. Leonelli, R. Rooyackers and G. Groeseneke, J. Appl. Phys. 110, 024510 (2011).

    Article  ADS  Google Scholar 

  20. Device simulator Atlas, Atlas User’s Manual, (Silvaco International Software, Santa Clara, CA, USA, 2015).

  21. Z. Ramezani and Ali A. Orouji, Superlattices and Microstructures 98, 359 (2016).

    Article  ADS  Google Scholar 

  22. Z. Ramezani and Ali A. Orouji, Journal of Elec. Materi. 46, 2269 (2017).

    Article  ADS  Google Scholar 

  23. M. Rahimian and Ali A. Orouji, Materials Science in Semiconductor Processing 16, 1248 (2013).

    Article  Google Scholar 

  24. K. Boucart and A. M. Ionescu, IEEE Trans. Electron Devices 54, 1725 (2007).

    Article  ADS  Google Scholar 

  25. B. Ghosh and M. W. Akram, IEEE Electron Device Lett. 34, 584 (2013).

    Article  ADS  Google Scholar 

  26. P. Wang, Y. Zhuang, Cong Li, Y. Li and Z. Jiang, Japanese Journal of Applied Physics 53, 084201 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Orouji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, Z., Orouji, A.A. A new DG nanoscale TFET based on MOSFETs by using source gate electrode: 2D simulation and an analytical potential model. Journal of the Korean Physical Society 71, 215–221 (2017). https://doi.org/10.3938/jkps.71.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.215

Keywords

Navigation