Skip to main content
Log in

Compact 2D modeling and drain current performance analysis of a work function engineered double gate tunnel field effect transistor

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The ongoing trend of device dimension miniaturization is attributed to a large extent by the development of several non-conventional device structures among which tunneling field effect transistors (TFETs) have attracted significant research attention due to its inherent characteristics of carrier conduction by built-in tunneling mechanism which in turn mitigates various short channel effects (SCEs). In this work, we have, incorporated the innovative concept of work function engineering by continuously varying the mole fraction in a binary metal alloy gate electrode along the horizontal direction into a double gate tunneling field effect transistor (DG TFET), thereby presenting a new device structure, a work function engineered double gate tunneling field effect transistor (WFEDG TFET). We have presented an explicit analytical surface potential modeling of the proposed WFEDG TFET by the solving the 2-D Poisson’s equation. From the surface potential expression, the electric field has been derived which has been utilized to formulate the expression of drain current by performing rigorous integration on the band-to-band tunneling generation rate over the tunneling region. Based on this analytical modeling, an overall performance comparison of our proposed WFEDG TFET with its normal DG TFET counterpart has been presented in this work to establish the superiority of our proposed structure in terms of surface potential and drain current characteristics. Analytical results have been compared with SILVACO ATLAS device simulator results to validate our present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Vishnoi, Rajat, Kumar, M.J.: Compact analytical model of dual material gate tunneling field effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61, 1936–1942 (2014)

    Article  Google Scholar 

  2. Gholizadeh, M., Hosseini, S.E.: A 2-D analytical model for double-gate tunnel FETs. IEEE Trans. Electron Devices 61(5), 1494–1500 (2014)

    Article  Google Scholar 

  3. Yadav, M., Bulusu, A., Dasgupta, S.: Two dimensional analytical modeling for asymmetric 3T and 4T double gate tunnel FET in sub-threshold region: Potential and electric field. Microelectron. J. 44, 1251–1259 (2013)

    Article  Google Scholar 

  4. Boucart, K., Ionescu, A.: Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  5. Mookerjea, S., Mohata, D., Mayer, T., Narayanan, V., Datta, S.: Temperature dependent I–V characteristics of a vertical In0.53Ga0.47As tunnel FET. IEEE Electron Device Lett. 31(6), 564–566 (2010)

    Article  Google Scholar 

  6. Born, M., Bhuwalka, K., Schindler, M., Ubelein, U., Schmidt, M., Sulima, T., Eisele, I.: Tunnel FET: a CMOS device for high temperature application. In: Proceedings of 25th International Conference on Microelectronics (MIEL2006), pp. 14–17 (2006)

  7. Toh, E.-H., Wang, G.H., Samudra, G., Yeo, Y.C.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103(10), 104504–104504-5 (2008)

    Article  Google Scholar 

  8. International Technology Roadmap for Semiconductor. http://www.itrs.net/

  9. Vishnoi, R., Kumar, M.J.: A pseudo 2D-analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61, 2264–2270 (2014)

    Article  Google Scholar 

  10. Verhulst, A.S., Sorée, B., Leonelli, D., Vandenberghe, W.G., Groeseneken, G.: Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor. J. Appl. Phys. 107, 024518 (2010)

    Article  Google Scholar 

  11. Vandenberghe, W.G., Verhulst, A.S., Groeseneken, G., Magnus, W.: Analytical model for a tunnel field-effect transistor. In: Electrotechnical Conference, MELECON, pp. 923–928 (2008)

  12. Shen, C., Ong, S.-L., Heng, C.-H., Samudra, G., Yeo, Y.-C.: A variational approach to the two-dimensional nonlinear Poisson’s equation for the modeling of tunneling transistors. IEEE Electron Device Lett. 29(11), 1252–1255 (2008)

    Article  Google Scholar 

  13. Deb, S., Singh, N.B., Islam, N., Sarkar, S.K.: Work function engineering with linearly graded binary metal alloy gate electrode for short channel SOI MOSFET. IEEE Trans. Nanotechnol. 11(3), 472–478 (2012)

    Article  Google Scholar 

  14. Manna, B., Sarkhel, S., Islam, N., Sarkar, S., Sarkar, Subir Kumar: Spatial composition grading of binary metal alloy gate electrode for short-channel SOI/SON MOSFET application. IEEE Trans. Electron Devices 59(12), 3280–3287 (2012)

    Article  Google Scholar 

  15. Sarkhel, S., Sarkar, S.K.: A comprehensive two dimensional analytical study of a nanoscale linearly graded binary metal alloy gate cylindrical junctionless MOSFET for improved short channel performance. J. Comput. Electron. 13(4), 925–932 (2014)

    Article  Google Scholar 

  16. Sarkhel, S., Manna, B., Sarkar, S.K.: Analytical modeling and simulation of a linearly graded binary metal alloy gate nanoscale cylindrical MOSFET for reduced short channel effects. J. Comput. Electron. 13(3), 599–605 (2014)

    Article  Google Scholar 

  17. Sarkhel, S., Sarkar, S.K.: A compact Quasi 3D threshold voltage modeling and performance analysis of a novel linearly graded binary metal alloy Quadruple gate MOSFET for subdued short channel effects. Superlattices Microstruct. 82, 293–302 (2015). doi:10.1016/j.spmi.2015.01.035

    Article  Google Scholar 

  18. Bhattacharyya, G., Shee, S., Sarkar, S.K.: Comprehensive quantum mechanical modeling of short channel SON MOSFET with spatial composition grading of binary metal alloy gate electrode. Superlattices Microstruct. 83, 676–689 (2015)

    Article  Google Scholar 

  19. Lee, C.K., Kim, J.Y., Hong, S.N., Zhong, H., Chen, B., Mishra, V.: Properties of Ta–Mo alloy gate electrode for n-MOSFET. J. Mater. Sci. 40, 2693–2695 (2005)

    Article  Google Scholar 

  20. Ishii, R., Matsumura, K., Sakai, A., Sakata, T.: Work function of binary alloys. Appl. Surf. Sci. 169–170, 658–661 (2001)

    Article  Google Scholar 

  21. Gelatt, C.D., Ehrenreich, H.: Charge transfer in alloys: AgAu. Phys. Rev. B 10(2), 398 (1974)

    Article  Google Scholar 

  22. Tsui, B.-Y., Huang, C.-F.: Wide range work function modulation of binary alloys for MOSFET application. IEEE Electron Device Lett. 24(3), 153–155 (2003)

    Article  Google Scholar 

  23. Pan, A., Liu, R., Sun, M., Ning, C.-Z.: Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 4(2), 671–680 (2010)

    Article  Google Scholar 

  24. Ohkubo, I., Christen, H.M., Khalifah, P., Sathyamurthy, S., Zhai, H.Y., Rouleau, C.M., Mandrus, D.G., Lowndes, D.H.: Continuous composition-spread thin films of transition metal oxides by pulsed-laser deposition. Appl. Surf. Sci. 223, 35–38 (2004)

    Article  Google Scholar 

  25. Christen, H.M., Rouleau, C.M., Ohkubo, I., Zhai, H.Y., Lee, H.N., Sathyamurthy, S., Lowndes, D.H.: An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas. Rev. Sci. Instrum. 74, 4058–4062 (2003)

    Article  Google Scholar 

  26. Young, K.K.: Short-channel effects in fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 36, 399–402 (1989)

    Article  Google Scholar 

  27. Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Drain current model for a gate all around (GAA) p-n-p-n tunnel FET. Microelectron. J. 44, 479–488 (2013)

    Article  Google Scholar 

  28. Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32(1), 83–91 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)

    Article  Google Scholar 

  30. Verhuslt, A.S., Leonelli, D., Rooyackers, R., Groeseneke, G.: Drain voltage dependent analytical model of tunnel field effect transistors. J. Appl. Phys. 110, 024510 (2011)

    Article  Google Scholar 

  31. Bagga, N., Sarkar, S.K.: An analytical model for tunnel barrier modulation in triple metal double gate TFET. IEEE Trans. Electron Devices 62(7), 2136–2142 (2015)

    Article  Google Scholar 

  32. ATLAS User’s Manual: Silvaco Inc. Santa Clara, CA (2010)

  33. Arun, T.S., Balamurugan, N.B.: An analytical modeling and simulation of dual material double gate tunnel field effect transistor for low power applications. J. Electr. Eng. Technol. 9(1), 247–253 (2014)

    Article  Google Scholar 

  34. Lee, M.J., Choi, W.Y.: Analytical model of single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs). Solid-State Electron. 63, 110–114 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Saheli Sarkhel thankfully acknowledges the financial support obtained in the form of State Research Fellowship from the Department of Electronics and Telecommunication Engineering, Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saheli Sarkhel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkhel, S., Bagga, N. & Sarkar, S.K. Compact 2D modeling and drain current performance analysis of a work function engineered double gate tunnel field effect transistor. J Comput Electron 15, 104–114 (2016). https://doi.org/10.1007/s10825-015-0772-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0772-3

Keywords

Navigation