Skip to main content
Log in

Effects of bohm potentials and fermi temperatures on nonplanar solitary and shock excitations in a strongly-coupled quantum plasma

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

An exhaustive theoretical investigation considering nonplanar geometry (cylindrical and spherical) in an unmagnetized, collisionless, strongly-coupled quantum electron-positron-ion (EPI) plasma (composed of viscous, positively-charged inertial heavy ion fluids, Fermi electrons and positrons) has been carried out on the nonlinear propagation of the ion-acoustic (IA) waves. The generalized quantum hydrodynamic model using the reductive perturbation method has been utilized to derive the Korteweg-de Vries (K-dV) and Burgers equations. The basic features (e.g., phase speed, amplitude, and width) of the IA solitary and shock waves are identified by analyzing the stationary solitary and shock wave solutions of the K-dV and Burgers equations, respectively. The basic characteristics of the IA nonlinear structures are found to be significantly modified by the ratio of the Fermi temperatures of positrons to electrons, the Fermi pressures of electrons and positrons, the plasma particle number densities, etc.. The results of this theoretical investigation may be useful in studying the IA waves propagating in both astrophysical and laboratory EPI plasmas (viz. white dwarfs, super-intense laser-dense matter experiments, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fiandrini, G. Esposito, B. Bertucci, B. Alpat, G. Ambrosi, R. Battiston, W. J. Burger, D. Caraffini, C. Cecchi, L. di Masso, N. Dinu, M. Ionica, R. Ionica, G. Lamanna, M. Pauluzzi, M. Menichelli and P. Zuccon, J. Geophys. Res. 108, 1402 (2003).

    Article  Google Scholar 

  2. A. M. Galper, S. V. Koldashov, V. V. Mikhailov and S. A. Voronov, Radiation Measurements 26, 375 (1996).

    Article  Google Scholar 

  3. S. A. Voronov, A. M. Galper, V. G. Kirilov-Ugryumov, S. V. Koldashov and A. V. Popov, JETP Lett. 43, 307 (1986).

    ADS  Google Scholar 

  4. P. Martin, J. Vink, S. Jiraskova, P. Jean and R. Diehl, A&A 519, A100 (2010).

    Article  ADS  Google Scholar 

  5. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (John Wiley, New York, 1983).

    Book  Google Scholar 

  6. R. Popham, S. E. Woosley and C. L. Fryer, Astrophys. J. 518, 356 (1999).

    Article  ADS  Google Scholar 

  7. H. R. Miller and P. J. Witta, Active Galactic Nuclei (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  8. E. P. Liang, S. C. Wilks and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998).

    Article  ADS  Google Scholar 

  9. C. Gahn, G. D. Tsakiris, G. Pretzler, K. J. Witte, C. Delfin, C. G. Wahlstrom and D. Habs, Appl. Phys. Lett. 77, 2662 (2000).

    Article  ADS  Google Scholar 

  10. M. Murklund and P. K. Shukla, Rev. Mod. Phys. 78, 591 (2006).

    Article  ADS  Google Scholar 

  11. V. I. Berezhiani, D. D. Tskhakaya and P. K. Shukla, Phys. Rev. A 46, 6608 (1992).

    Article  ADS  Google Scholar 

  12. Ata-ur-Rahman, Michael Mc Kerr, Wael F. El-Taibany, Ioannis Kourakis and A. Qamar, Phys. Plasmas 22, 022305 (2015).

    Google Scholar 

  13. H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).

    Article  ADS  Google Scholar 

  14. A. A. Mamun and P. K. Shukla, Europhys. Lett. 94, 65002 (2011).

    Article  ADS  Google Scholar 

  15. H. K. Andersen, N. D’Angelo, P. Michelsen and P. Nielsen, Phys. Rev. Lett. 19, 149 (1967).

    Article  ADS  Google Scholar 

  16. H. Ikezi, R. J. Taylor and D. R. Baker, Phys. Rev. Lett. 25, 11 (1970).

    Article  ADS  Google Scholar 

  17. Ata-ur-Rahman, S. Ali, A. Mushtaq and A. Qamar, J. Plasma Phys. 79, 817 (2013).

    Article  ADS  Google Scholar 

  18. M. A. Hossen, M. R. Hossen and A. A. Mamun, Braz. J. Phys. 44, 703 (2014).

    Article  ADS  Google Scholar 

  19. M. Ferdousi, S. Yasmin, S. Ashraf and A. A. Mamun, IEEE Trans. Plasma Sci. 43, 643 (2015).

    Article  ADS  Google Scholar 

  20. C. Chan, M. Khazei, K. E. Lonngren and N. Hershkowitz, Phys. Fluids 24, 1452 (1981).

    Article  ADS  Google Scholar 

  21. H. R. Pakzad, Astrophys. Space Sci. 331, 169 (2011).

    Article  ADS  Google Scholar 

  22. S. Ali, W. M. Moslem, P. K. Shukla and R. Schlickeiser, Phys. Plasmas 14, 082307 (2007).

    Article  ADS  Google Scholar 

  23. C. Bhowmik, A. P. Misra and P. K. Shukla, Phys. Plasmas 14, 122107 (2007).

    Article  ADS  Google Scholar 

  24. F. Haas, L. G. Garcia, J. Goedert and G. Manfredi, Phys. Plasmas 10, 3858 (2003).

    Article  ADS  Google Scholar 

  25. S. Mahmood and A. Mushtaq, Phys. Lett. A 372, 3467 (2008).

    Article  ADS  Google Scholar 

  26. M-J. Lee and Y-D. Jung, Phys. Lett. A 381, 636 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  27. M. R. Hossen and A. A. Mamun, Braz. J. Phys. 45, 200 (2015).

    Article  ADS  Google Scholar 

  28. M. R. Hossen, L. Nahar and A. A. Mamun, Braz. J. Phys. 44, 638 (2014).

    Article  ADS  Google Scholar 

  29. P. R. Dip, M. A. Hossen, M. Salahuddin and A. A. Mamun, J. Korean Phys. Soc. 68, 520 (2016).

    Article  ADS  Google Scholar 

  30. S. A. Khan, Astrophys. Space Sci. 343, 683 (2013).

    Article  ADS  Google Scholar 

  31. A. Mushtaq and S. A. Khan, Phys. Plasmas 14, 052307 (2007).

    Article  ADS  Google Scholar 

  32. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Butterworth-Heinemann, Oxford, 1980).

    Google Scholar 

  33. M. S. Zobaer, K. N. Mukta, L. Nahar, N. Roy and A. A. Mamun, IEEE Trans. Plasma Sci. 41, 1614 (2013).

    Article  ADS  Google Scholar 

  34. S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1974).

    Article  ADS  Google Scholar 

  35. S. A. Khan, Indian J. Phys 88, 433 (2014).

    Article  ADS  Google Scholar 

  36. P. R. Dip, M. A. Hossen, M. Salahuddin and A. A. Mamun, Eur. Phys. J. D 71, 52 (2017).

    Article  ADS  Google Scholar 

  37. M. Rosenberg and G. J. Kalman, Europhys. Lett. 75, 894 (2006).

    Article  ADS  Google Scholar 

  38. C. Kojima, K. Minami, W. Qin and O. Ishihara, IEEE Trans. Plasma Sci. 31, 1379 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Dip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dip, P.R., Hossen, M.A., Salahuddin, M. et al. Effects of bohm potentials and fermi temperatures on nonplanar solitary and shock excitations in a strongly-coupled quantum plasma. Journal of the Korean Physical Society 70, 777–784 (2017). https://doi.org/10.3938/jkps.70.777

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.70.777

Keywords

Navigation