Skip to main content
Log in

Development of a HPGe shielding system for radioactivity measurements at Cheongpyeong Underground Radiation Laboratory

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We constructed an underground laboratory called Cheongpyeong Underground Radiation Laboratory (CURL) for measuring the radioactivity levels of various samples by using HPGe detectors. CURL is located underground at a depth of 1000-m water equivalent in the Cheongpyeong Pumped Storage Power Plant. We developed a shielding system, which consists of 15-cm-thick Pb blocks and 5-cm-thick Cu blocks and completely surrounds a 100% HPGe detector. We measured the background radiations and the gamma peaks from sources with and without the shield. The shielding efficiencies were also estimated using MCNP5 simulations, and they were compared to our measured data. The shielding system blocked more than 99.99% of gamma rays with energies up to 3.0 MeV. The HPGe detector with the shielding system at CURL blocked both high-energy cosmic rays and background radiation from surrounding rocks and materials. Our CURL detector system was optimized for gamma-ray measurements of meterials with ultra-low radioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bellerive, J. R. Klein, A. B. McDonald, A. J. Noble and A. W. P. Poon, Nucl. Phys. B 908, 30 (2016).

    Article  ADS  Google Scholar 

  2. K. Abe, N. Abgrall, H. Aihara, Y. Ajima, J. B. Albert et al., Nucl. Instrum. Meth. Phys. A 659, 106 (2011).

    Article  ADS  Google Scholar 

  3. M. Haffke et al., Nucl. Instrum. Meth. Phys. A 643, 36 (2011).

    Article  ADS  Google Scholar 

  4. N. J. T. Smith, Nucl. Phys. B (Proc. Suppl.) 229, 333 (2012).

    Article  ADS  Google Scholar 

  5. A. Bettini, Nucl. Instrum. Meth. Phys. A 626, S64 (2011).

    Article  ADS  Google Scholar 

  6. L. Pandola, AIP Conf. Proc. 1338, 12 (2011).

    Article  ADS  Google Scholar 

  7. M. Laubenstein et al., Appl. Radiat. Isot. 61, 167 (2004).

    Article  Google Scholar 

  8. L. Miramonti, Appl. Radiat. Isot. 57, 209 (2002).

    Article  Google Scholar 

  9. National Research Council (US), Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2 (National Academies Press, Washington DC, 2006).

    Google Scholar 

  10. D. J. Strom, J. R. Cameron and B. L. Cohen, Med. Phys. 25, 273 (2000).

    Article  Google Scholar 

  11. T. D. Luckey and K. S. Lawrence, Dose-Response 4, 169 (2006).

    Article  Google Scholar 

  12. I. Radulescu, A. M. Blebea-Apostu, R. M. Margineanu and N. Mocanu, Nucl. Instrum. Meth. Phys. A 715, 112 (2013).

    Article  ADS  Google Scholar 

  13. S. Neumaier et al., Appl. Radiat. Isot. 53, 173 (2000).

    Article  Google Scholar 

  14. M. Pellicciari et al., Radiat. Prot. Dosim. 116, 359 (2005).

    Article  Google Scholar 

  15. H. J. Kim, I. S. Hahn, M. J. Hwang, R. K. Jain, U. K. Kang et al., Astro. Part. Phys. 20, 549 (2004).

    Article  ADS  Google Scholar 

  16. K. W. Kim, W. G. Kang, S. Y. Oh, P. Adhikari, J. H. So et al., Astro. Part. Phys. 62, 249 (2015).

    Article  ADS  Google Scholar 

  17. http://www.ortec-online.com/download/GEM.pdf.

  18. S. K. Kim, I. S. Cho, D. H. Choi, J. M. Choi, I. S. Hahn et al., Nucl. Phy. B (Proc. Suppl.) 124, 217 (2003).

    Article  ADS  Google Scholar 

  19. H. Neder, G. Heusser and M. Laubenstein, Appl. Radiat. Isot. 53, 191 (2000).

    Article  Google Scholar 

  20. G. Lutter et al., Appl. Radiat. Isot. 81, 81 (2013).

    Article  Google Scholar 

  21. G. Heusser, Annu. Rev. Nucl. Part. Sci. 45, 543 (1995).

    Article  ADS  Google Scholar 

  22. S. Neumaier, M. Wojcik, H. Dombrowski and D. Arnold, Appl. Radiat. Isot. 57, 213 (2002).

    Article  Google Scholar 

  23. M. D’Arienzo et al., Appl. Radiat. Isot. 112, 165 (2016).

    Article  Google Scholar 

  24. R. Nunez-Lagos and A. VIirto, Appl. Radiat. Isot. 47, 1011 (1996).

    Article  Google Scholar 

  25. F. Cannizzaro, G. Greco, M. Raneli, M. C. Spitale and E. Tomarchio, Nucl. Instrum. Meth. Phys. A 390, 167 (1997).

    Article  ADS  Google Scholar 

  26. J. K. Shultis and R. E. Faw, An MCNP Primer (Kansas State University, Manhattan, 2011), Chap. 3, p. 16.

    Google Scholar 

  27. S. Neumaier, M. Wojcik, H. Dombrowski and D. Arnold, Appl. Radiat. Isot. 67, 736 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Hahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S.I., Huh, J.Y., Lee, E.K. et al. Development of a HPGe shielding system for radioactivity measurements at Cheongpyeong Underground Radiation Laboratory. Journal of the Korean Physical Society 69, 1666–1672 (2016). https://doi.org/10.3938/jkps.69.1666

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.69.1666

Keywords

PACS numbers

Navigation