Skip to main content

Advertisement

Log in

Comparison of experimental and theoretical radiation shielding parameters of several environmentally friendly materials

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, the gamma radiation shielding features of several environmentally friendly materials were investigated. For this purpose, several attenuation parameters, such as the mass attenuation coefficient (\(\mu /\rho\)), radiation protection efficiency (RPE), and effective atomic number (Zeff) were determined experimentally and compared with numerical data obtained using WinXCom software. In the measurements, the emitted gamma photons were counted by a gamma spectrometer equipped with an HPGe detector using 22Na, 54Mn, 57Co, 60Co, 133Ba, and 137Cs radioactive point sources in the energy region of 81–1333 keV. The obtained results indicate that the \(\mu /\rho\) and RPE values of the samples decrease with an increase in photon energy. The experimental values are in good agreement with those obtained using WinXCom software. The RPE and Zeff results show that among the studied materials, the NaY0.77Yb0.20Er0.03F4 sample has the best gamma radiation shielding effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Humphries, Rare Earth Elements: The Global Supply Chain. https://fas.org/sgp/crs/natsec/R41347.pdf. Accessed 15 Sept 2018

  2. K. Binnemans, P.T. Jones, B. Blanpain et al., Recycling of rare earths: a critical review. J. Clean. Prod. 51(1–22), 2013 (2013). https://doi.org/10.1016/j.jclepro.2012.12.037

    Article  Google Scholar 

  3. T. Hirajima, K. Sasaki, A. Bissombolo et al., Feasibility of an efficient recovery of rare earth-activated phosphors from waste fluorescent lamps through dense-medium centrifugation. Sep. Purif. Technol. 44(3), 197–204 (2005). https://doi.org/10.1016/j.seppur.2004.12.014

    Article  Google Scholar 

  4. R. Shanker, A.F. Khan, R. Kumar et al., Understanding and arresting degradation in highly efficient blue emitting BaMgAl10O17:Eu2+ phosphor—a longstanding technological problem. J. Lumin. 143, 173–180 (2013). https://doi.org/10.1016/j.jlumin.2013.04.021

    Article  Google Scholar 

  5. V. Singh, R.P.S. Chakradhar, J.L. Rao et al., EPR and photoluminescence properties of combustion-synthesized ZnAl2O4:Cr3+ phosphors. J. Mater. Sci. 46(7), 2331–2337 (2011). https://doi.org/10.1007/s10853-010-5078-z

    Article  Google Scholar 

  6. C.W. Won, H.H. Nersisyan, H.I. Won et al., Synthesis of nano-size BaMgAl10O17:Eu2+ blue phosphor by a rapid exothermic reaction. J. Lumin. 130(4), 678–681 (2010). https://doi.org/10.1016/j.jlumin.2009.11.017

    Article  Google Scholar 

  7. B.M.J. Smets, Phosphors based on rare-earths, a new era in fluorescent lighting. Mater. Chem. Phys. 16(3–4), 283–299 (1987). https://doi.org/10.1016/0254-0584(87)90103-9

    Article  Google Scholar 

  8. J. Zhang, Z. Zhang, Z. Tang et al., Mn2+ luminescence in (Ce, Tb)MgAl11O19 phosphor. Mater. Chem. Phys. 72(1), 81–84 (2001). https://doi.org/10.1016/S0254-0584(01)00301-7

    Article  Google Scholar 

  9. B. Park, S. Lee, J. Kang et al., Single-step solid-state synthesis of CeMgAl11O19:Tb phosphor. Bull. Korean Chem. Soc. 28(9), 1467–1471 (2007). https://doi.org/10.5012/bkcs.2007.28.9.1467

    Article  Google Scholar 

  10. Q. Liu, W. Feng, T. Yang et al., Upconversion luminescence imaging of cells and small animals. Nat. Protoc. 8(10), 2033–2044 (2013). https://doi.org/10.1038/nprot.2013.114

    Article  Google Scholar 

  11. J.C. Zhou, Z.L. Yang, W. Dong et al., Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb, Tm nanocrystals. Biomaterials 32(34), 9059–9067 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.038

    Article  Google Scholar 

  12. J. Shan, J. Chen, J. Meng et al., Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors. J. Appl. Phys. 104(9), 094308 (2008). https://doi.org/10.1063/1.3008028

    Article  Google Scholar 

  13. D. Dacyl, D. Uhlich, T. Jüstel, The effect of calcium substitution on the afterglow of Eu2+/Dy3+doped Sr4Al14O25. Cent. Eur. J. Chem. 7(2), 164–167 (2009). https://doi.org/10.2478/s11532-009-0017-z

    Article  Google Scholar 

  14. L.B.T. La, C. Leatherday, Y.K. Leong et al., Green lightweight lead-free Gd2O3/epoxy nanocomposites with outstanding X-ray attenuation performance. Compos. Sci. Technol. 163, 89–95 (2018). https://doi.org/10.1016/j.compscitech.2018.05.018

    Article  Google Scholar 

  15. J.P. McCaffrey, F. Tessier, H. Shen, Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Med. Phys. 39(7), 4537–4546 (2012). https://doi.org/10.1118/1.4730504

    Article  Google Scholar 

  16. G.J. Scuderi, G.V. Brusovanik, D.R. Campbell et al., Evaluation of on-lead-based protective radiological material in spinal surgery. Spine J. 6(5), 577–582 (2006). https://doi.org/10.1016/j.spinee.2005.09.010

    Article  Google Scholar 

  17. Maestro. https://www.ortec-online.com/products/application-software/maestro-mca. Accessed 15 Sept 2018

  18. O. Agar, I. Boztosun, C. Segebade, Multielemental analysis of some soils in Karaman by PAA using a cLINAC. Appl. Radiat. Isot. 122, 57–62 (2017). https://doi.org/10.1016/j.apradiso.2017.01.011

    Article  Google Scholar 

  19. F. Akman, I.H. Geçibesler, M.I. Sayyed et al., Determination of some useful radiation interaction parameters for waste foods. Nucl. Eng. Technol. 50(6), 944–949 (2018). https://doi.org/10.1016/j.net.2018.05.007

    Article  Google Scholar 

  20. H.S. Mann, G.S. Brar, K.S. Mann et al., Experimental investigation of clay fly ash bricks for gamma-ray shielding. Nucl. Eng. Technol. 48(5), 1230–1236 (2016). https://doi.org/10.1016/j.net.2016.04.001

    Article  Google Scholar 

  21. J.H. Hubbell, Photon mass attenuation and energy-absorption coefficients. Int. J. Appl. Radiat. Isot. 33(11), 1269–1290 (1982). https://doi.org/10.1016/0020-708X(82)90248-4

    Article  Google Scholar 

  22. L. Gerward, N. Guilbert, K.B. Jensen et al., WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71(3), 653–654 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040

    Article  Google Scholar 

  23. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloys Compd. 688, 111–117 (2016). https://doi.org/10.1016/j.jallcom.2016.07.153

    Article  Google Scholar 

  24. F. Akman, R. Durak, M.F. Turhan et al., Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015). https://doi.org/10.1016/j.apradiso.2015.04.001

    Article  Google Scholar 

  25. F. Akman, M.R. Kaçal, F. Akman et al., Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides. Can. J. Phys. 95, 1005–1011 (2017). https://doi.org/10.1139/cjp-2016-0811

    Article  Google Scholar 

  26. M.I. Sayyed, H.O. Tekin, O. Kılıcoglu et al., Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results. Results Phys. 11, 40–45 (2018). https://doi.org/10.1016/j.rinp.2018.08.029

    Article  Google Scholar 

  27. C. Eke, O. Agar, C. Segebade et al., Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV. Radiochim. Acta 105(10), 851–863 (2017). https://doi.org/10.1515/ract-2016-2690

    Article  Google Scholar 

  28. F. Akman, R. Durak, M.R. Kacal et al., Study of absorption parameters around the K edge for selected compunds of Gd. X-Ray Spectrom. 45(2), 103–110 (2016). https://doi.org/10.1002/xrs.2676

    Article  Google Scholar 

  29. O. Agar, M.I. Sayyed, F. Akman et al., An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nucl. Eng. Technol. (2019). https://doi.org/10.1016/j.net.2018.12.014

    Article  Google Scholar 

  30. M.I. Sayyed, Y. Elmahroug, B.O. Elbashir et al., Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J. Mater. Sci. Mater. Electron. 28(5), 4064–4074 (2017). https://doi.org/10.1007/s10854-016-6022-z

    Article  Google Scholar 

  31. L. Shamshad, G. Rooh, P. Limkitjaroenporn et al., A comparative study of gadolinium based oxide and oxyfluoride glasses as low energy radiation shielding materials. Prog. Nucl. Energy 97, 53–59 (2017). https://doi.org/10.1016/j.pnucene.2016.12.014

    Article  Google Scholar 

  32. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389–1401 (1997). https://doi.org/10.1016/S0306-4549(97)00003-0

    Article  Google Scholar 

  33. M.L. Taylor, R.L. Smith, F. Dossing et al., Robust calculation of effective atomic numbers: the Auto-Z eff software. Med. Phys. 39(4), 1769–1778 (2012). https://doi.org/10.1118/1.3689810

    Article  Google Scholar 

  34. R. El-Mallawany, M.I. Sayyed, M.G. Dong, Comparative shielding properties of some tellurite glasses: part 2. J. Non Cryst. Solids 474, 16–23 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.08.011

    Article  Google Scholar 

  35. P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Des. 307, 364–376 (2016). https://doi.org/10.1016/j.nucengdes.2016.07.029

    Article  Google Scholar 

  36. N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann. Nucl. Energy 55, 23–28 (2013). https://doi.org/10.1016/j.anucene.2012.12.011

    Article  Google Scholar 

  37. M.I. Sayyed, Investigation of shielding parameters for smart polymers. Chin. J. Phys. 54(3), 408–415 (2016). https://doi.org/10.1016/j.cjph.2016.05.002

    Article  Google Scholar 

  38. O. Agar, Study on gamma ray shielding performance of concretes doped with natural sepiolite mineral. Radiochim. Acta 106(12), 1009–1016 (2018). https://doi.org/10.1515/ract-2018-2981

    Article  Google Scholar 

  39. http://skuld.bmsc.washington.edu/scatter/AS_periodic.html. X-ray Absorption Edges (2018). Accessed 15 Sept 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Akman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akman, F., Agar, O., Kaçal, M.R. et al. Comparison of experimental and theoretical radiation shielding parameters of several environmentally friendly materials. NUCL SCI TECH 30, 110 (2019). https://doi.org/10.1007/s41365-019-0631-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0631-1

Keywords

Navigation