Skip to main content
Log in

Acoustic band gaps with diffraction gratings in a two-dimensional phononic crystal with a square lattice in water

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The present work reports a combined experimental and theoretical study on the acoustic band gaps in a two-dimensional (2D) phononic crystal (PC) consisting of periodic square arrays of stainless-steel cylinders with diameters of 1.0 mm and a lattice constant of 1.5 mm in water. The theoretical band structure of the 2D PC was calculated along the ΓX direction of the first Brillouin zone. The transmission and the reflection coefficients were obtained both experimentally and theoretically along the ΓX direction of the 2D PC. The 2D PC exhibited 5 band gaps at frequencies below 2.0 MHz, with the first Bragg gap being around a frequency of 0.5 MHz. To understand the band gaps in the 2D PC, we calculated the acoustic pressure fields at specific frequencies of interest for normal incidence, and we explained them from the perspective of acoustic diffraction gratings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Sigalas and E. N. Economou, J. Sound Vib. 158, 377 (1992).

    Article  ADS  Google Scholar 

  2. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).

    Article  ADS  Google Scholar 

  3. M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).

    Article  ADS  Google Scholar 

  4. J. O. Vasseur, P. Deymier, B. Chenni, B. Djafari- Rouhani, L. Dobrzynski and D. Prevost, Phys. Rev. Lett. 86, 3012 (2001).

    Article  ADS  Google Scholar 

  5. Y. Pennec, J. O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski and P. A. Deymier, Surf. Sci. Rep. 65, 229 (2010).

    Article  ADS  Google Scholar 

  6. F. R. Montero de Espinoza, E. Jimenez and M. Torres, Phys. Rev. Lett. 80, 1208 (1998).

    Article  ADS  Google Scholar 

  7. M. Torres, F. R. Montero de Espinosa, D. Garcia-Pablos and N. Garcia, Phys. Rev. Lett. 82, 3054 (1999).

    Article  ADS  Google Scholar 

  8. Y. Tanaka and S. I. Tamura, Phys. Rev. B 60, 13294 (1999).

    Article  ADS  Google Scholar 

  9. V. Laude, M. Wilm, S. Benchabane and A. Khelif, Phys. Rev. E 71, 036607 (2005).

    Article  ADS  Google Scholar 

  10. T. T. Wu, L. C. Wu, and Z. G. Huang, J. Appl. Phys. 97, 094916 (2005).

    Article  ADS  Google Scholar 

  11. R. Sainidou, N. Stefanou and A. Modinos, Phys. Rev. B 66, 212301 (2002).

    Article  ADS  Google Scholar 

  12. J. H. Page, S. Yang, Z. Liu, M. L. Cowan, C. T. Chan and P. Sheng, Z. Kristallogr. 220, 859 (2005).

    Google Scholar 

  13. X. Zhang, T. Jackson, E. Lafond, P. Deymier and J. Vasseur, Appl. Phys. Lett. 88, 0419 (2006).

    Google Scholar 

  14. Y. Wang, F. Li, Y. Wang, K. Kishimoto and W. Huang, Acta Mech. Sin. 25, 65 (2008).

    Article  ADS  Google Scholar 

  15. T. Kurose, K. Tsuruta, C. Totsuji and H. Totsuji, Mater. Trans. 50, 1004 (2009).

    Article  Google Scholar 

  16. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  ADS  Google Scholar 

  17. M. Ke, Z. Liu, C. Qiu, W. Wang, J. Shi, W. Wen and P. Sheng, Phys. Rev. B 72, 064306 (2005).

    Article  ADS  Google Scholar 

  18. A. Sukhovich, L. Jing and J. H. Page, Phys. Rev. B 77, 014301 (2008).

    Article  ADS  Google Scholar 

  19. A. Sukhovich, B. Merheb, K. Muralidharan, J. O. Vasseur, Y. Pennec, P. A. Deymier and J. H. Page, Phys. Rev. Lett. 102, 154301 (2009).

    Article  ADS  Google Scholar 

  20. M. Dubois, E. Bossy, S. Enoch, S. Guenneau, G. Lerosey and P. Sebbah, Phys. Rev. Lett. 114, 013902 (2015).

    Article  ADS  Google Scholar 

  21. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan and P. Sheng, Phys. Rev. Lett. 88, 104301 (2002).

    Article  ADS  Google Scholar 

  22. K. I. Lee, J. Korean Phys. Soc. 54, 71 (2009).

    Article  ADS  Google Scholar 

  23. D. P. Elford, L. Chalmers, F. V. Kusmartsev and G. M. Swallowe, J. Acoust. Soc. Am. 130, 2746 (2011).

    Article  ADS  Google Scholar 

  24. R. P. Moiseyenko, S. Herbison, N. F. Declercq and V. Laude, J. Appl. Phys. 111, 034907 (2012).

    Article  ADS  Google Scholar 

  25. R. P. Moiseyenko, J. Liu, N. F. Declercq and V. Laude, Appl. Phys. Lett. 102, 034108 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Il Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.I., Kang, H.S. & Yoon, S.W. Acoustic band gaps with diffraction gratings in a two-dimensional phononic crystal with a square lattice in water. Journal of the Korean Physical Society 68, 989–993 (2016). https://doi.org/10.3938/jkps.68.989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.989

Keywords

Navigation