Skip to main content
Log in

Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, the elastic wave propagation in a two-dimensional piezoelectric phononic crystal is studied by considering the mechanic–electric coupling. The generalized eigenvalue equation is obtained by the relation of the mechanic and electric fields as well as the Bloch–Floquet theorem. The band structures of both the in-plane and anti-plane modes are calculated for a rectangular lattice by the plane-wave expansion method. The effects of the lattice constant ratio and the piezoelectricity with different filling fractions are analyzed. The results show that the largest gap width is not always obtained for a square lattice. In some situations, a rectangular lattice may generate larger gaps. The band gap characteristics are influenced obviously by the piezoelectricity with the larger lattice constant ratios and the filling fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sigalas M.M., Economou E.N.: Band structure of elastic waves in two dimensional systems. Solid State Commun. 86, 141–143 (1993)

    Article  Google Scholar 

  2. Kushwaha M.S., Halevi P., Dobrzynski L., Djafari-Rouhani B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993)

    Article  Google Scholar 

  3. Liu Z.Y., Chan C.T., Sheng P.: Three-component elastic wave band-gap material. Phys. Rev. B 65, 165116 (2002)

    Article  Google Scholar 

  4. Sheng P., Zhang X.X., Liu Z., Chan C.T.: Locally resonant sonic materials. Phys. B 338, 201–205 (2003)

    Article  Google Scholar 

  5. Kobayashi F., Biwa S., Ohno N.: Wave transmission characteristics in periodic media of finite length: multilayers and fiber arrays. Int. J. Solids Struct. 41, 7361–7375 (2004)

    Article  MATH  Google Scholar 

  6. Yan Z.Z., Wang Y.S.: Wavelet-based method for calculating elastic band gaps of two-dimensional phononic crystals. Phys. Rev. B 74, 224303 (2006)

    Article  Google Scholar 

  7. Henderson B.K., Maslov K.I., Kinra V.K.: Experimental investigation of acoustic band structures in tetragonal periodic particulate composite structures. J. Mech. Phys. Solids 49, 2369–2383 (2001)

    Article  MATH  Google Scholar 

  8. Jensen J.S.: Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J. Sound Vib. 266, 1053–1078 (2003)

    Article  Google Scholar 

  9. Wang G., Wen J.H., Wen X.S.: Quasi-one-dimensional phononic crystals studied using the improved lumped-mass method: Application to locally resonant beams with flexural wave band gap. Phys. Rev. B 71, 104302 (2005)

    Article  Google Scholar 

  10. Srikantha Phani A., Woodhouse J., Fleck N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119, 1995–2005 (2006)

    Article  Google Scholar 

  11. Gazonas G.A., Weile D.S., Wildman R., Mohan A.: Genetic algorithm optimization of phononic bandgap structures. Int. J. Solids Struct. 43, 5851–5866 (2006)

    Article  MATH  Google Scholar 

  12. Tanaka Y., Yano T., Tamura S.: Surface guided waves in two-dimensional phononic crystals. Wave Motion 44, 501–512 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gorishnyy T., Jang J.H., Koh C.Y., Thomas E.L.: Direct observation of a hypersonic band gap in two-dimensional single crystalline phononic structures. Appl. Phys. Lett. 91, 121915 (2007)

    Article  Google Scholar 

  14. Baumgartl J., Zvyagolskaya M., Bechinger C.: Tailoring of phononic band structures in colloidal crystals. Phys. Rev. Lett. 99, 205503 (2007)

    Article  Google Scholar 

  15. Olsson, R.H., III, EI-Kady, I.F., Su, M.F., Tuck, M.R., Fleming, J.G.: Microfabricated VHF acoustic crystals and waveguides. Sens. Actuators A Phys. (2007). doi:10.1016/j.sna.2007.10.081

  16. Gonella S., Ruzzene M.: Analysis of in-plane wave propagation in hexagonal and re-entrant lattices. J. Sound Vib. 312, 125–139 (2008)

    Article  Google Scholar 

  17. Mesquida A.A., Otero J.A., Ramos R.R.: Wave propagation in layered piezoelectric structures. J. Appl. Phys. 83, 4652–4659 (1998)

    Article  Google Scholar 

  18. Wilm M., Ballandras S., Laude V., Pastureaud T.: A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures. J. Acoust. Soc. Am. 112, 943–952 (2002)

    Article  Google Scholar 

  19. Wilm, M., Khelif, A., Ballandras, S., Laude, V.: Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials. Phys. Rev. E 67, 065602(R) (2003)

  20. Hou Z.L., Wu F.G., Liu Y.Y.: Phononic crystals containing piezoelectric material. Solid State Commun. 130, 745–749 (2004)

    Article  Google Scholar 

  21. Wu T.T., Hsu Z.C., Huang Z.G.: Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal. Phys. Rev. B 71, 064303 (2005)

    Article  Google Scholar 

  22. Khelif A., Aoubiza B., Mohammadi S., Adibi A., Laude V.: Complete band gaps in two-dimensional phononic crystal slabs. Phys. Rev. E 74, 046610 (2006)

    Article  Google Scholar 

  23. Benchabane, S., Khelif, A., Rauch, J.-Y., Robert, L., Laude, V.: Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Phys. Rev. E 73, 065601(R) (2006)

  24. Li F.M., Wang Y.S., Hu C., Huang W.H.: Wave localization in randomly disordered periodic layered piezoelectric structures. Acta Mech. Sinica 22, 559–567 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yan Z.Z., Wang Y.S., Zhang C.: Wavelet method for calculating the defect states of two-dimensional phononic crystals. Acta Mech. Solida Sinica 21, 104–109 (2008)

    Google Scholar 

  26. Li F.M., Wang Y.S., Chen A.L.: Wave localization in randomly disordered periodic piezoelectric rods. Acta Mech. Solida Sinica 19, 50–57 (2006)

    Google Scholar 

  27. Li F.M., Wang Y.Z., Fang B., Wang Y.S.: Propagation and localization of two-dimensional in-plane elastic waves in randomly disordered layered piezoelectric phononic crystals. Int. J. Solids Struct. 44, 7444–7456 (2007)

    Article  Google Scholar 

  28. Wang Y.Z., Li F.M., Huang W.H., Wang Y.S.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)

    Article  Google Scholar 

  29. Zou X.Y., Chen Q., Liang B., Cheng J.C.: Control of the elastic wave bandgaps in two-dimensional piezoelectric periodic structures. Smart Mater. Struct. 17, 015008 (2008)

    Article  Google Scholar 

  30. Wu F.G., Liu Z.Y., Liu Y.Y.: Acoustic band gaps in 2D liquid phononic crystals of rectangular structure. J. Phys. D Appl. Phys. 35, 162–165 (2002)

    Article  MathSciNet  Google Scholar 

  31. Wu F.G., Hou Z.L., Liu Z.Y., Liu Y.Y.: Acoustic band gaps in two-dimensional rectangular arrays of liquid cylinders. Solid State Commun. 123, 239–242 (2002)

    Article  Google Scholar 

  32. Kuang W.M., Hou Z.L., Liu Y.Y.: The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals. Phys. Lett. A 332, 481–490 (2004)

    Article  MATH  Google Scholar 

  33. Hsiao F.L., Khelif A., Moubchir H., Choujaa A., Chen C.C., Laude V.: Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals. J. Appl. Phys. 101, 044903 (2007)

    Article  Google Scholar 

  34. Wang, Y.Z., Li, F.M., Huang, W.H., Wang, Y.S.: Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. J. Phys. Condens. Matter 19, 496204 (9pp) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yize Wang.

Additional information

The project supported by the National Natural Science Foundation of China (10672017 and 10632020).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Li, F., Wang, Y. et al. Tuning of band gaps for a two-dimensional piezoelectric phononic crystal with a rectangular lattice. Acta Mech Sin 25, 65–71 (2009). https://doi.org/10.1007/s10409-008-0191-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-008-0191-9

Keywords

Navigation