Skip to main content
Log in

Effect of argon gas pressure on residual stress, microstructure evolution and electrical resistivity of beryllium films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The residual stress in beryllium films fabricated on K9 substrates by using magnetron sputtering deposition is measured by using a curvature method and is theoretically estimated by using the Nix and Clemens (NC) model. The experimental results indicate that the 1.3-μm-thick film is always in a tensile state for pressure variations in the range from 0.4 to 1.2 Pa. When the sputtering gas pressure is increased, the average stress increases at first, after which it decreases by a remarkable amount. The observed descending trend of the tensile stress when the sputtering gas pressure is beyond 0.6 Pa is mainly attributed to the grain size in the film being larger than that in the film when the pressure is below 0.6 Pa. The maximal residual stress of 552 MPa at a sputtering gas pressure of 0.6 Pa is close to the tensile strength (550 MPa) of the corresponding beryllium bulk material and is about 8 times smaller than that calculated by using the N-C model. In addition, the surface morphologies of the as-fabricated films reveal fibrous grains while the cross-sectional morphologies are characterized by a coarsening of columnar grains. The measured electric resistivity of each film strongly depends on its porosity and the sizes of its grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Xu et al., Fusion Sci. Tech. 51, 547 (2007).

    Google Scholar 

  2. S. W. Haan, D. A. Callahan and M. J. Edwards, Fusion Sci. Tech. 55, 228 (2009).

    Google Scholar 

  3. A. J. Detor, A. M. Hodge, E. Chason, Y. M. Wang, H. W. Xu, M. Conyers, A. Nikroo and A. Hamz, Acta Mater. 57, 2055 (2009).

    Article  Google Scholar 

  4. J. A. Thornton and D. W. Hoffman, Thin solid films 171, 5 (1989).

    Article  ADS  Google Scholar 

  5. W. D. Nix and B. M. Clemens, J. Mater. Res. 14, 3467 (1999).

    Article  ADS  Google Scholar 

  6. N. H. Kim, C. II. Park and H. Y. Lee, J. Korean Phys. Soc. 63, 229 (2013).

    Article  ADS  Google Scholar 

  7. S. C. Seel and C. V. Thompson, J. Appl. Phys. 93, 9038 (2003).

    Article  ADS  Google Scholar 

  8. H. W. Xu et al., J. Mater. Res. 27, 822 (2012).

    Article  ADS  Google Scholar 

  9. H. P. Wang, J. Chang and B. Wei, J. Appl. Phys. 106, 033506 (2009).

    Article  ADS  Google Scholar 

  10. X. B. Ma, H. P. Wang, K. Zhou, J. Chang and Z. Y. Hong, Appl. Phys. Lett. 103, 104101 (2013).

    Article  ADS  Google Scholar 

  11. Y. Tsuda, H. Omoto, K. Tanaka and H. Ohsaki, Thin Solid Films 502, 223 (2006).

    Article  ADS  Google Scholar 

  12. Y. C. Yang, C. H. Tsaua and J. W. Yeh, Scripta Mater. 64, 173 (2011).

    Article  Google Scholar 

  13. F. A. Doljack and R. W. Hoffman, Thin Solid Films 12, 71 (1972).

    Article  ADS  Google Scholar 

  14. G. G. Stoney, Proc. Roy. Soc., London Set. A 82, 172 (1909).

    Article  ADS  Google Scholar 

  15. C. A. Klein, J. Appl. Phys. 88, 5487 (2000).

    Article  ADS  Google Scholar 

  16. D. K. Kim and H. B. Kim. J. Korean Phys. Soc. 66, 1581 (2015)

    Article  ADS  Google Scholar 

  17. H. B. Xie, Vacuum 3, 37 (1999).

    Google Scholar 

  18. B. C. Luo, K. Li, X. L. Kang, J. Q. Zhang, Y. D. He, J. S. Luo, W. D. Wu and Y. J. Tang, Chin. Phys. B 23, 066804 (2014).

    Article  ADS  Google Scholar 

  19. F. Mammoliti, M. G. Grimal and F. La Via, J. Appl. Phys. 92, 3147 (2002).

    Article  ADS  Google Scholar 

  20. L. He, Z. Y. Ling, J. Appl. Phys. 110, 093708 (2011).

    Article  ADS  Google Scholar 

  21. A. F. Mayadas and M. Shatzkes, Phys. Rev. B1 13, 82 (1970).

    Google Scholar 

  22. E. H. Sondheimer, Adv. in Phys. 1, 1 (1952).

    Article  ADS  Google Scholar 

  23. J. W. Lim, K. Mimura and M. Isshiki, Appl. Surf. Sci. 217, 95 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Dong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, BC., Li, K., Zhang, JQ. et al. Effect of argon gas pressure on residual stress, microstructure evolution and electrical resistivity of beryllium films. Journal of the Korean Physical Society 68, 557–562 (2016). https://doi.org/10.3938/jkps.68.557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.68.557

Keywords

Navigation