Skip to main content

Advertisement

Log in

Nanomechanical properties of Nb films deposited by pulsed frequency magnetron sputtering

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fabrication of niobium-based devices requires precision and reliability and, consequently, the characterization and description of their mechanical properties. However, there are few studies in the literature on mechanical properties characterization, even less so at the nanoscale, where new technologies require this knowledge. In this work, we study the dependence of the morphology, nanomechanical properties, and friction of niobium films on the pulsed frequency during DC sputtering. Niobium films without oxide in their bulk and bcc crystal structure were deposited at room temperature on Si (100) substrate under sputtering pulse frequencies of 20, 100, and 350 kHz. As the pulsed frequency increased, the morphology changed from granular to flake-like, indicating a change in the atomic accommodation due to the increase in the niobium ion energy during the plasma sputtering, which resulted in an increase in the elastic modulus of films. Elastic modulus maps into an area of 1 µm × 1 µm revealed local variations for films with flake-like morphology. Increasing the pulsed frequency in plasma sputtering at 100 and 350 kHz resulted in films with higher elastic modulus flakes and higher attenuation of the ultrasonic wave during nanomechanical mapping, which was related to dissipative forces due to lateral friction, while the granular morphology and lower elastic modulus of films deposited at 20 kHz was associated with friction at interfaces.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The raw data can be accessed on request from the corresponding author.

References

  1. Bagheri S, Strohfeldt N, Ubl M, Berrier A, Merker M, Richter G, Siegel M, Giessen H (2018) Niobium as alternative material for refractory and active plasmonics. ACS Photonics 5:3298–3304. https://doi.org/10.1021/acsphotonics.8b00530

    Article  CAS  Google Scholar 

  2. Wilde S, Valizadeh R, Malyshev OB, Stenning GBG, Sian T, Chesca B (2018) dc magnetometry of niobium thin film superconductors deposited using high power impulse magnetron sputtering. Phys Rev Accel Beams 073101:1–12. https://doi.org/10.1103/PhysRevAccelBeams.21.073101

    Article  Google Scholar 

  3. Seifried F, Leiste H, Schwaiger R, Ulrich S, Seifert HJ, Stueber M (2018) Structure, morphology and selected mechanical properties of magnetron sputtered (Mo, Ta, Nb) thin films on NiTi shape memory alloys. Surf Coat Technol 347:379–389. https://doi.org/10.1016/j.surfcoat.2018.05.014

    Article  CAS  Google Scholar 

  4. Li M, Pu G, Luo Y, Ye Z, Wei J, Chen S, Wu A, Yang L (2021) The investigation of chemical vapor deposited copper-based niobium films. Mater Res Express 8:046402–046415

    Article  CAS  Google Scholar 

  5. Ramana CV, Makeswaran N, Zade V, Das D, Tan S, Xu S, Beyerlein IJ (2022) Fabrication and characterization of high-quality epitaxial nanocolumnar Niobium films with abrupt interfaces on YSZ(001). Phys Chem C. https://doi.org/10.1021/acs.jpcc.1c08738

    Article  Google Scholar 

  6. Bagheri S, Zgrabik CM, Gissibl T, Tittl A, Sterl F, Walter R, De Zuani S, Berrier A, Stauden T, Hu EL, Giessen H (2015) Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid- infrared by femtosecond direct laser writing and interference lithography [Invited ]. Opt Mater Express 5:7998–8006. https://doi.org/10.1364/OME.5.002625

    Article  Google Scholar 

  7. Guler U, Technologies R, Naik G, Kildishev AV (2012) Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Appl Phys B Lasers Opt 107:5708–5713. https://doi.org/10.1007/s00340-012-4955-3

    Article  CAS  Google Scholar 

  8. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM (2010) Searching for better plasmonic materials. Laser Photon Rev 808:795–808. https://doi.org/10.1002/lpor.200900055

    Article  CAS  Google Scholar 

  9. Kurter C, Abrahams J, Shvets G, Anlage SM (2013) Plasmonic scaling of superconducting metamaterials. Phys Rev 180510:1–5. https://doi.org/10.1103/PhysRevB.88.180510

    Article  CAS  Google Scholar 

  10. Skliarova H, Azzolini O, Cherenkova-Dousset O, Johnson RR, Palmieri V (2014) Niobium-based sputtered thin films for corrosion protection of proton-irradiated liquid water targets for [18F] production. J Phys D Appl Phys 47:45306–45317. https://doi.org/10.1088/0022-3727/47/4/045306

    Article  CAS  Google Scholar 

  11. Berti G, Torres-Castanedo CG, Goronzy DP, Bedzyk MJ, Hersam MC, Kopas C, Marshall J, Iavarone M (2023) Scanning tunneling microscopy and spectroscopy characterization of Nb films for quantum applications. Appl Phys Lett 122:192605–192611. https://doi.org/10.1063/5.0145090

    Article  CAS  Google Scholar 

  12. Gontad F, Lorusso A, Panareo M, Monteduro AG, Maruccio G (2015) Nanomechanical and electrical properties of Nb thin films deposited on Pb substrates by pulsed laser deposition as a new concept photocathode for superconductor cavities. Nucl Instrum Methods Phys Res A 804:132–136. https://doi.org/10.1016/j.nima.2015.09.064

    Article  CAS  Google Scholar 

  13. Audronis M, Leyland A, Kelly PJ, Matthews A (2006) The effect of pulsed magnetron sputtering on the structure and mechanical properties of CrB2 coatings. Surf Coat Technol 201:3970–3976. https://doi.org/10.1016/j.surfcoat.2006.08.006

    Article  CAS  Google Scholar 

  14. Albrecht G, Ubl M, Kaiser S, Giessen H, Hentschel M (2018) Comprehensive study of plasmonic materials in the visible and near- infrared: linear, refractory, and nonlinear optical properties. ACS Photonics 5:1058–1067. https://doi.org/10.1021/acsphotonics.7b01346

    Article  CAS  Google Scholar 

  15. Park JH, Han SE, Nagpal P, Norris DJ (2016) Observation of thermal beaming from tungsten and molybdenum Bull’s eyes. ACS Photonics 3:494–500. https://doi.org/10.1021/acsphotonics.6b00022

    Article  CAS  Google Scholar 

  16. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188. https://doi.org/10.2478/s11534-011-0096-2

    Article  Google Scholar 

  17. Stan G, Solares SD (2014) Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies. Beilstein J Nanotechnol 5:278–288. https://doi.org/10.3762/bjnano.5.30

    Article  CAS  Google Scholar 

  18. Flores-Ruiz FJ, Espinoza-Beltrán FJ, Diliegros-Godines CJ, Siqueiros JM, Herrera-Gómez A (2016) Atomic force acoustic microscopy: influence of the lateral contact stiffness on the elastic measurements. Ultrasonics 71:271–277. https://doi.org/10.1016/j.ultras.2016.07.003

    Article  CAS  Google Scholar 

  19. Rabe U (2006) Atomic force acoustic microscopy. In: Bhushan B, Fuchs H (Eds), Appl. Scanning Probe Methods II Scanning Probe Microsc. Tech., Springer Berlin Heidelberg, Berlin, Heidelberg, pp 37–90. https://doi.org/10.1007/3-540-27453-7_2

  20. Espinoza-Beltrán FJ, Geng K, Muñoz Saldaña J, Rabe U, Hirsekorn S, Arnold W (2009) Simulation of vibrational resonances of stiff AFM cantilevers by finite element methods. New J Phys 11:083034–083056. https://doi.org/10.1088/1367-2630/11/8/083034

    Article  CAS  Google Scholar 

  21. Garduño-Medina A, Muñoz-Pineda E, Vázquez-Delgado MA, Garcia-Vazquez V, Espinosa-Luna R, Flores-Ruiz FJ (2021) AFM measurement of the cuticle of the orchid bee Euglossa sp.: elastic properties under dehydrated and hydrated conditions. Measurement 185:110045–110060. https://doi.org/10.1016/j.measurement.2021.110045

    Article  Google Scholar 

  22. Taleb S, Badillo M, Flores-Ruiz FJ, Acuautla M (2023) From synthesis to application: high-quality flexible piezoelectric sensors fabricated from tetragonal BaTiO3/ P(VDF-TrFE) composites. Sens Actuators A Phys 361:114585–114596. https://doi.org/10.1016/j.sna.2023.114585

    Article  CAS  Google Scholar 

  23. Vlcek J, Pajdarov AD, Musil J (2004) Pulsed dc magnetron discharges and their utilization in plasma surface engineering. Plasma Phys 44:426–436. https://doi.org/10.1002/ctpp.2004100

    Article  CAS  Google Scholar 

  24. Bradley JW, Backer H, Aranda-Gonzalvo Y, Kelly PJ, Arnell RD (2002) The distribution of ion energies at the substrate in an asymmetric bi-polar pulsed DC magnetron discharge. Plasma Sour Sci Technol 11:165–174

    Article  CAS  Google Scholar 

  25. Ma Q, Rosenberg RA (2003) Angle-resolved X-ray photoelectron spectroscopy study of the oxides on Nb surfaces for superconducting r. f. cavity applications. Appl Surf Sci 206:209–217

    Article  CAS  Google Scholar 

  26. Ma Q, Ryan P, Freeland JW, Rosenberg RA (2004) Thermal effect on the oxides on Nb (100) studied by synchrotron-radiation X- ray photoelectron spectroscopy. J Appl Phys 96:7675–7680. https://doi.org/10.1063/1.1809774

    Article  CAS  Google Scholar 

  27. Sharahi HJ, Janmaleki M, Tetard L, Kim S, Sadeghian H, Verbiest GJ (2021) Acoustic subsurface-atomic force microscopy: three- dimensional imaging at the nanoscale. J Appl Phys 129:030901–030922. https://doi.org/10.1063/5.0035151

    Article  CAS  Google Scholar 

  28. Rabe U, Kopycinska-Müller M, Hirsekorn S (2013) Atomic force acoustic microscopy. In: Acoust Scanning Probe Microsc, pp 315–350. https://doi.org/10.1007/978-3-642-27494-7

  29. Khamseh S, Alibakhshi E, Ramezanzadeh B, Sari MG, Nezhad AK (2020) Developing a graphite like carbon: niobium thin film on GTD-450 stainless steel substrate. Appl Surf Sci 511:145613–145623. https://doi.org/10.1016/j.apsusc.2020.145613

    Article  CAS  Google Scholar 

  30. Hurley DC, Shen K, Jennett NM, Turner JA (2003) Atomic force acoustic microscopy methods to determine thin-film elastic properties. J Appl Phys 94:2347–2354. https://doi.org/10.1063/1.1592632

    Article  CAS  Google Scholar 

  31. Xu Z, Yate L, Qiu Y, Aperador W, Coy E, Jiang B, Moya S, Wang G, Pan H (2019) Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: the role of the nonmetal elements. Mater Sci Eng C 96:166–175. https://doi.org/10.1016/j.msec.2018.10.091

    Article  CAS  Google Scholar 

  32. Li X, Cao WH, Tao XF, Ren LL, Zhou LQ, Xu GF (2016) Structural and nanomechanical characterization of niobium films deposited by DC magnetron sputtering. Appl Phys A 122:505–511. https://doi.org/10.1007/s00339-016-9990-1

    Article  CAS  Google Scholar 

  33. Zgheib E, Alhussein A, Slim MF, Khalil K, François M (2019) Multilayered models for determining the Young’s modulus of thin films by means of Impulse Excitation Technique. Mech Mater 137:103143–103160. https://doi.org/10.1016/j.mechmat.2019.103143

    Article  Google Scholar 

  34. Kopycinska-Müller M, Striegler A, Köhler B, Wolter K-J (2011) Mechanical characterization of thin films by use of atomic force acoustic microscopy. Adv Eng Mater 13:312–318. https://doi.org/10.1002/adem.201000245

    Article  CAS  Google Scholar 

  35. Liu Y, Varghese S, Ma J, Yoshino M, Lu H, Komanduri R (2015) Orientation effects in nanoindentation of single crystal copper. Int J Plast 24:1990–2015. https://doi.org/10.1016/j.ijplas.2008.02.009

    Article  CAS  Google Scholar 

  36. Lin J, Wu ZL, Zhang XH, Mishra B, Moore JJ, Sproul WD (2009) A comparative study of CrNx coatings synthesized by dc and pulsed dc magnetron sputtering. Thin Solid Films 517:1887–1894. https://doi.org/10.1016/j.tsf.2008.09.093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CONAHCyT for the grants received through the projects FOINS-CONACyT 2016-01-2488, CF-2023-I-1429, and VIEP-BUAP projects ID:00169 and ID:00224. The authors thank Dr. Ulises Salazár Kuri and the XRD-IFUAP Laboratory for their support in the XRD measurements.

Author information

Authors and Affiliations

Authors

Contributions

JGM was involved in writing—original draft, visualization, conceptualization, investigation. JRB, OCM, and AEG helped in validation, investigation, data curation. FJFR contributed to funding acquisition, visualization, investigation, supervision.

Corresponding author

Correspondence to F. J. Flores-Ruiz.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This manuscript does not contain any human or animal experiments.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medrano, J.G., Raboño-Borbolla, J., Cortazar-Martínez, O. et al. Nanomechanical properties of Nb films deposited by pulsed frequency magnetron sputtering. J Mater Sci 58, 14556–14569 (2023). https://doi.org/10.1007/s10853-023-08928-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08928-z

Navigation