Skip to main content
Log in

Investigation of the effects of different models of nanofluids on their flow and heat transfer characteristics

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper is devoted to an investigation of the influences of thermal radiation on an unsteady, mixed, convection boundary layer flow and the heat transfer over a vertical heated permeable stretching sheet embedded in a porous medium. Different models of the nanofluid based on different formulae for the thermal conductivity and the dynamic viscosity and their effects on the fluid flow and the heat transfer characteristics are discussed. Using the similarity transformation, we transform the governing equations into similarity, non-linear, ordinary differential equations which are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. The obtained results are presented graphically, and the physical aspects of the problem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. U. S. Choi, D. A. Siginer and H. P. Wang, Non-New. flows (ASME, New York, 1995) Vol. FED 231, p. 99.

    Google Scholar 

  2. J. A. Eastman, S. U. S. Choi, W. Yu and L. J. Thompson, Appl. Phys. Let 78, 718 (2001).

    Article  ADS  Google Scholar 

  3. S. K. Das, S. Choi, W. Yu and T. Pradeep, Nanofluids: Science and Technology (Wiley, New York, 2007).

    Book  Google Scholar 

  4. A. V. Kuznetsov and D. A. Nield, Int. J. Thermal. Sci 49, 243 (2010).

    Article  Google Scholar 

  5. W. A. Khan and A. Aziz, Int. J. Thermal Sci 50, 1207 (2011).

    Article  Google Scholar 

  6. W. A. Khan and A. Aziz, Int. J. Thermal Sci 50, 2154 (2011).

    Article  Google Scholar 

  7. C. W. Sohn and M. M. Chen, J. Heat Mass Transf 103, 45 (1981).

    Google Scholar 

  8. D. Wen and Y. Ding, J. Heat Mass Transf 47, 5181, (2004).

    Article  Google Scholar 

  9. Q. Li and Y. Xuan, Experimental investigation of transport properties of nanofluids (In: Buxuan, Wang(ed) Heat transfer Sci and technology, Bejiing, 2000), p. 757.

    Google Scholar 

  10. X. Q. Wang and A. S. Mujumdar, Int. J. Thermal Sci 46, 1 (2007).

    Article  MATH  Google Scholar 

  11. R. Nazar, M. Jaradat, N. M. Arifin and I. Pop, Central European J. Phys 9, 1195 (2011).

    ADS  Google Scholar 

  12. N. Bachok, A. Ishak and I. Pop, Int. J. Heat Mass Transf. 55, 2102 (2012).

    Article  Google Scholar 

  13. P. Cheng, W. J. Minkowycz, J. Geo. Phys. Res 82, 2040 (1977).

    Article  ADS  Google Scholar 

  14. F. C. Lai and F. A. Kulacki, Int. J. Heat Mass Transf 113, 252 (1991).

    Google Scholar 

  15. J. T. Hong, Y. Yamada and C. L. Tien, Trans. ASME J. Heat Transf 109, 356 (1987).

    Article  Google Scholar 

  16. R. A. Van Gorder, E. Sweet and K. Vajravelu, Commun. Nonlinear Sci. Numer. Simulat 15, 1494 (2010).

    Article  ADS  MATH  Google Scholar 

  17. W. A. Khan and I. Pop, Int. J. Heat Mass Trans 53, 2477 (2010).

    Article  MATH  Google Scholar 

  18. M. Hassan, M. M. Tabar, H. Nemati, G. Domairry and F. Noori, Int. J. Thermal Sci 50, 2256 (2011).

    Article  Google Scholar 

  19. S. Yao, T. Fang and Y. Zhong, Commun. Nonlinear Sci. Numer. Simulat 16, 752 (2011).

    Article  ADS  MATH  Google Scholar 

  20. O. D. Makinde and A. Aziz, Int. J. Thermal Sci 50, 1326 (2011).

    Article  Google Scholar 

  21. R. Kandasamya, P. Loganathanb and P. P. Arasub, Nuc. Engg. Design 241, 2053 (2011).

    Article  Google Scholar 

  22. M. A. A. Hamad and M. Ferdows, Commun. Nonlinear Sci. Numer. Simulat 17, 132 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Mandy, Nuclear Engg. Design 249, 248 (2012).

    Article  Google Scholar 

  24. A. C. Cogley, W. E. Vincenty and S. E. Gilles. AIAA J 6, 551 (1968).

    Article  ADS  Google Scholar 

  25. A. Raptis, Int. Commun. Heat Mass Transf 25, 289 (1998).

    Article  Google Scholar 

  26. O. D. Makinde, Int. Commun. Heat Mass Transf 32, 1411 (2005).

    Article  Google Scholar 

  27. F. S. Ibrahim, A. M. Elaiw and A. A. Bakr, Appl. Math. Inf. Sci 2, 143 (2008).

    MathSciNet  MATH  Google Scholar 

  28. K. Das, Heat Mass Transf 48, 767 (2011).

    Article  ADS  Google Scholar 

  29. R. Abdul-Kahar, R. Kandasamy and I. Muhaimin, Comput. Fluids 52, 15 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. K. Tiwari and M. K. Das, Int. J. Heat Mass Transf 50, 2002 (2007).

    Article  MATH  Google Scholar 

  31. H. F. Oztop and E. Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008).

    Article  Google Scholar 

  32. A. Ishak, R. Nazar and I. Pop, Meccanica. 44, 369 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kalidas Das, Nilangshu Acharya or Prabir Kumar Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Acharya, N. & Kundu, P.K. Investigation of the effects of different models of nanofluids on their flow and heat transfer characteristics. Journal of the Korean Physical Society 67, 1167–1174 (2015). https://doi.org/10.3938/jkps.67.1167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1167

Keywords

Navigation