Skip to main content
Log in

Effects of impurities on phase transition changes according to heat treatment of porous anodic alumina fabricated in oxalic acid and phosphoric acid electrolytes

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, porous anodic alumina (PAA) was fabricated using oxalic acid and phosphoric acid as electrolytes, and the effects of impurities on the phase transition of PAA according to changes in the heat-treatment temperature were investigated. The average pore diameter of PAA fabricated using oxalic acid and phosphoric acid increased from 43 nm to 64 nm and from 145 nm to 183 nm, respectively, in proportion to the increase in the heat-treatment temperature. An X-ray diffraction (XRD) structure analysis revealed the structure of PAA fabricated in oxalic acid to be amorphous at or below 800°C and it changed to γ-alumina at 850°C. At higher temperatures, as the heattreatment temperature was increased, a coexistence of γ- and δ-alumina phases was observed in the 900–1000°C range, and the existence of δ-alumina was observed only at 1050°C. Finally, at 1100°C, a coexistence of δ- and α-alumina phases was observed. On the other hand, for PAA fabricated in phosphoric acid, while an amorphous structure appeared at or below 800°C, as was the case with PAA fabricated in oxalic acid, only δ-alumina existed in the 850–1100°C range. On the basis of 27Al magic-angle-spinning nuclear magnetic resonance (MAS NMR) and Fourier transform infrared spectrometry (FT-IR) results, we concluded that such a discrepancy in the phase transition was attributable to interactions between impurities originating from the electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Bu, Y. C. Choi, J. K. Han, S. A. Yang and J. Kim, J. Korean Phys. Soc. 59, 2551 (2011).

    Article  Google Scholar 

  2. S. Hong et al., Adv. Mater. 25, 2339 (2013).

    Article  Google Scholar 

  3. S. Y. Cho, S. A. Yang, J. K. Han and S. D. Bu, Ferroelectrics 455, 104 (2013).

    Article  Google Scholar 

  4. Y. H. Li et al., Chem. Phys. Lett. 350, 412 (2001).

    Article  ADS  Google Scholar 

  5. H. L. Lira and R. Paterson, J. Membr. Sci. 206, 375 (2002).

    Article  Google Scholar 

  6. L. A. O’Dell, S. L. P. Savin, A. V. Chadwick and M. E. Smith, Solid State Nucl. Magn. Reson. 31, 169 (2007).

    Article  Google Scholar 

  7. J. M. McHale, A. Auroux, A. J. Perrotta and A. Navrotsky, Science 277, 788 (1997).

    Article  Google Scholar 

  8. A. Bshish, Z. Yaakob, B. Narayanan, R. Ramakrishnan and A. Ebshish, Chem. Pap. 65, 251 (2011).

    Article  Google Scholar 

  9. S. Rossignol and C. Kappenstein, Int. J. Inorg. Mater. 3, 51 (2001).

    Article  Google Scholar 

  10. I. Levin and D. Brandon, J. Am. Ceram. Soc. 81, 1995 (1998).

    Article  Google Scholar 

  11. P. P. Mardilovich, A. N. Govyadinov, N. I. Mukhurov, A. M. Rzhevskii and R. Paterson, J. Membr. Sci. 98, 131 (1995).

    Article  Google Scholar 

  12. A. Kirchner, K. J. D. MacKenzie, I. W. M. Brown, T. Kemmitt and M. E. Bowden, J. Membr. Sci. 287, 264 (2007).

    Article  Google Scholar 

  13. I. W. M. Brown, M. E. Bowden, T. Kemmitt and K. J. D. MacKenzie, Curr. Appl. Phys. 6, 557 (2006).

    Article  ADS  Google Scholar 

  14. J. Kin, Y. C. Choi, K. S. Chang and S. D. Bu, Nanotechnology 17, 355 (2006).

    Article  ADS  Google Scholar 

  15. D. Wang, Y. Ruan, L. Zhang, W. Zhu and P. Wang, Cryst. Res. Technol. 48, 348 (2013).

    Article  Google Scholar 

  16. E. R. H. van Eck, A. P. M. Kentgens, H. Kraus and R. Prins, J. Phys. Chem. 99, 16080 (1995).

    Article  Google Scholar 

  17. Y. Han, L. Cao, F. Xu, T. Chen, Z. Zheng, K. Qian and W. Huang, Mater. Chem. Phys. 129, 1247 (2011).

    Article  Google Scholar 

  18. M. Deschamps, F. Fayon, V. Montouillout and D. Massiot, Chem. Commun. 18, 1924 (2006).

    Article  Google Scholar 

  19. M. E. M. Zamora and J. M. Saniger, Rev. Mex. Fis. 51, 502 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Don Bu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S.Y., Kim, J.W. & Bu, S.D. Effects of impurities on phase transition changes according to heat treatment of porous anodic alumina fabricated in oxalic acid and phosphoric acid electrolytes. Journal of the Korean Physical Society 66, 1394–1400 (2015). https://doi.org/10.3938/jkps.66.1394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1394

Keywords

Navigation