Skip to main content
Log in

Thermal Modification of Porous Oxide Films Obtained by Anodizing of Aluminum–Magnesium Alloy

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Anodizing of aluminum in acidic electrolytes leads to the formation of porous oxide films on the metal surface. Heat treatment is one of possible ways to control the functional properties of this material. In this work, anodizing of aluminum alloy A5005 in a 0.3 M solution of sulfuric acid was carried out in the kinetic mode. A multi-stage heat treatment protocol has been proposed that allows controlled two-stage crystallization of as-prepared amorphous anodic alumina with preservation of the porous structure. At the first stage, anodic alumina crystallizes into a mixture of low-temperature Al2O3 polymorphs, accompanied by the removal of electrolyte impurities from its structure and an increase in the specific surface area to 42 m2/g due to the formation of a mesoporous structure. Subsequent heat treatment at 1200°C leads to the formation of α-Al2O3 films with an average grain size of 4 μm, with preservation of a porous structure with an average pore diameter of 26 nm. The crystallization of as-prepared amorphous anodic alumina results in an increase in its chemical stability by several orders of magnitude, which makes it possible to use the developed methods for creating membranes capable of functioning in aggressive media and catalyst carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. E. A. Chernova, D. I. Petukhov, O. O. Kapitanova, et al., Nanosyst. Phys. Chem. Math. 9, 614 (2018). https://doi.org/10.17586/2220-8054-2018-9-5-614-621

  2. I. V. Roslyakov, D. I. Petukhov and K. S. Napolskii, Nanotechnology 32, 33LT01 (2021). https://doi.org/10.1088/1361-6528/ABFEEA

    Article  CAS  Google Scholar 

  3. A. A. Mistonov, I. S. Dubitskiy, A. H. Elmekawy et al., Phys. Solid State 63, 1058 (2021). https://doi.org/10.1134/S1063783421070179

    Article  CAS  Google Scholar 

  4. I. I. Ryzhkov, I. A. Kharchenko, E. V. Mikhlina et al., Int. J. Heat Mass Transf. 176, 121414 (2021). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2021.121414

    Article  CAS  Google Scholar 

  5. A. D. Davydov and V. M. Volgin, Russ. J. Electrochem. 52, 806 (2016). https://doi.org/10.1134/S1023193516090020

    Article  CAS  Google Scholar 

  6. R. G. Valeev, A. L. Trigub, A. N. Beltiukov et al., J. Synch. Investig. 13, 92 (2019). https://doi.org/10.1134/S1027451019010373

    Article  CAS  Google Scholar 

  7. I. V. Gasenkova, I. M. Andrukhovich and V. V. Tkachev, J. Synch. Investig. 2019 13, 700 (2019). https://doi.org/10.1134/S1027451019040232

  8. A. N. Kokatev, I. V. Lukiyanchuk, N. M. Yakovleva et al., Prot. Met. Phys. Chem. Surf. 52, 832 (2016). https://doi.org/10.1134/S2070205116050130

    Article  CAS  Google Scholar 

  9. I. V. Roslyakov, I. V. Kolesnik, P. V. Evdokimov et al., Sens. Actuators, B 330, 129307 (2021). https://doi.org/10.1016/J.SNB.2020.129307

    Article  CAS  Google Scholar 

  10. N. K. Ibrayev, A. K. Zeinidenov, A. K. Aimukhanov and K. S. Napolskii, Quantum Electron. 45, 663 (2015). https://doi.org/10.1070/QE2015V045N07ABEH015533

    Article  CAS  Google Scholar 

  11. A. R. Pomozov, I. A. Kolmychek, E. A. Gan’shina et al., Phys. Solid State 60, 2264 (2018). https://doi.org/10.1134/S1063783418110264

    Article  CAS  Google Scholar 

  12. K. S. Napolskii, A. A. Noyan and S. E. Kushnir, Opt. Mater. 109, 110317 (2020). https://doi.org/10.1016/J.OPTMAT.2020.110317

    Article  CAS  Google Scholar 

  13. A. P. Leontiev, I. V. Roslyakov, A. S. Vedeneev and K. S. Napolskii, J. Synch. Investig. 10, 548 (2016). https://doi.org/10.1134/S1027451016030113

    Article  CAS  Google Scholar 

  14. I. V. Roslyakov, D. S. Koshkodaev, V. A. Lebedev and K. S. Napolskii, J. Synch. Investig. 13, 955 (2019). https://doi.org/10.1134/S1027451019050343

  15. L. Zaraska, G. D. Sulka, J. Szeremeta and M. Jaskuła, Electrochim. Acta 55, 4377 (2010). https://doi.org/10.1016/J.ELECTACTA.2009.12.054

    Article  CAS  Google Scholar 

  16. S. V. Grigor’ev, N. A. Grigor’eva, A. V. Syromyatnikov et al., JETP Lett. 85, 449 (2007). https://doi.org/10.1134/S0021364007090081

    Article  CAS  Google Scholar 

  17. J. M. Montero-Moreno, M. Sarret and C. Müller, Microporous Mesoporous Mater. 136, 68 (2010). https://doi.org/10.1016/J.MICROMESO.2010.07.022

    Article  CAS  Google Scholar 

  18. C.-K. Chung, M.-W. Liao, C.-T. Lee and H.-C. Chang, Nanoscale Res. Lett. 6, 596 (2011). https://doi.org/10.1186/1556-276X-6-596

    Article  PubMed  PubMed Central  Google Scholar 

  19. W. J. Stepniowski, J. Choi, H. Yoo et al., J. Electroanal. Chem. 771, 37 (2016). https://doi.org/10.1016/J.JELECHEM.2016.04.010

    Article  CAS  Google Scholar 

  20. K. V. Stepanova, N. M. Yakovleva, A. N. Kokatev and H. Pettersson, J. Synch. Investig. 10, 933 (2016). https://doi.org/10.1134/S102745101605013X

    Article  CAS  Google Scholar 

  21. A. E. Kozhukhova, S. P. du Preez and D. G. Bessarabov, Surf. Coat. Technol. 383, 125234 (2020). https://doi.org/10.1016/J.SURFCOAT.2019.125234

    Article  CAS  Google Scholar 

  22. C. C. Chen, J. H. Chen and C. G. Chao, Jpn. J. Appl. Phys. 44, 1529 (2005). https://doi.org/10.1143/JJAP.44.1529

    Article  CAS  Google Scholar 

  23. E. O. Gordeeva, I. V. Roslyakov, A. I. Sadykov et al., Russ. J. Electrochem. 54, 990 (2018). https://doi.org/10.1134/S1023193518130165

    Article  CAS  Google Scholar 

  24. G.W.H. Höhne, W.F. Hemminger and H.-J. Flammersheim, Differential Scanning Calorimetry (Springer Berlin Heidelberg, 2003): p. 115. https://doi.org/10.1007/978-3-662-06710-9_5

  25. E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc. 73, 373 (1951). https://doi.org/10.1021/JA01145A126

    Article  CAS  Google Scholar 

  26. C. A. Schneider, W. S. Rasband and K. W. Eliceiri, Nat. Methods 9, 671 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. http://www.eng.fnm.msu.ru/en/software/.

  28. S. Y. Cho, J. W. Kim and S. D. Bu, J. Korean Phys. Soc. 66, 1394 (2015). https://doi.org/10.3938/JKPS.66.1394

    Article  CAS  Google Scholar 

  29. M. E. Mata-Zamora and J. M. Saniger, Rev. Mex. Fis. 51, 502 (2005).

    CAS  Google Scholar 

  30. S. V. Tsybulya and G. N. Kryukova, Phys. Rev. B 77, 024112 (2008). https://doi.org/10.1103/PhysRevB.77.024112

    Article  CAS  Google Scholar 

  31. A. I. Vorob’eva, D. L. Shimanovich and O. A. Sycheva, Russ. Microelectron. 47, 40 (2018). https://doi.org/10.1134/S1063739718010080

  32. I. V. Roslyakov, N. A. Shirin, M. V. Berekchiian et al., Microporous Mesoporous Mater. 294, 109840 (2020). https://doi.org/10.1016/J.MICROMESO.2019.109840

    Article  CAS  Google Scholar 

  33. I. V. Gasenkova and E. V. Ostapenko, J. Synch. Investig. 7, 536 (2013). https://doi.org/10.1134/S1027451013030245

    Article  CAS  Google Scholar 

  34. I. V. Roslyakov, K. S. Napolskii, P. V. Evdokimov et al., Nanosyst.: Phys. Khim. Mat. 4, 120 (2013). http://mi.mathnet.ru/eng/nano/v4/i1/p120.

  35. T. Masuda, H. Asoh, S. Haraguchi and S. Ono, Materials 8, 1350 (2015). https://doi.org/10.3390/MA8031350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. K. Chernyakova, R. Karpicz, D. Rutkauskas, I. Vrublevsky and A. W. Hassel, Phys. Status Solidi 215, 1700892 (2018). https://doi.org/10.1002/PSSA.201700892

    Article  Google Scholar 

  37. I. V. Roslyakov, I. V. Kolesnik, E. E. Levin et al., Surf. Coat. Technol. 381, 125159 (2020). https://doi.org/10.1016/J.SURFCOAT.2019.125159

    Article  CAS  Google Scholar 

  38. P. P. Mardilovich, A. N. Govyadinov, N. I. Mukhurov, A. M. Rzhevskii and R. Paterson, J. Membr. Sci. 98, 131 (1995). https://doi.org/10.1016/0376-7388(94)00184-Z

    Article  CAS  Google Scholar 

  39. P. P. Mardilovich, A. N. Govyadinoy, N. I. Mazurenko and R. Paterson, J. Membr. Sci. 98, 143 (1995). https://doi.org/10.1016/0376-7388(94)00185-2

    Article  CAS  Google Scholar 

  40. A. I. Sadykov, A. P. Leontev, S. E. Kushnir, A. V. Lukashin and K. S. Napolskii, Russ. J. Inorg. Chem. 66, 258 (2021). https://doi.org/10.1134/S0036023621020182

    Article  CAS  Google Scholar 

  41. C.-W. Lee, H.-S. Kang, Y.-H. Chang and Y.-M. Hahm, Korean J. Chem. Eng. 17, 266 (2000). https://doi.org/10.1007/BF02699038

  42. A. Santos, T. Kumeria, Y. Wang and D. Losic, Nanoscale 6, 9991 (2014). https://doi.org/10.1039/C4NR01422G

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the support of the Interdisciplinary Scientific and Educational School of Lomonosov Moscow State University “The future of the planet and global environmental change.” SEM images were obtained using the equipment of the Joint Research Centre for Physical Methods of Research of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences. The X-ray powder diffraction, STA, and nitrogen capillary condensation methods were implemented using equipment purchased by Lomonosov Moscow State University Program of Development.

Funding

The study was supported by the Russian Foundation for Basic Research (grant no. 19-33-60088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Napolskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirin, N.A., Roslyakov, I.V., Berekchiian, M.V. et al. Thermal Modification of Porous Oxide Films Obtained by Anodizing of Aluminum–Magnesium Alloy. Russ. J. Inorg. Chem. 67, 926–933 (2022). https://doi.org/10.1134/S0036023622060262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622060262

Keywords:

Navigation