Skip to main content
Log in

Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson and S.W. Wilkins, Nature 373, 595 (1995).

    Article  ADS  Google Scholar 

  2. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin and Z. Barneaa, Phys. Rev. Lett. 77, 2961 (1996).

    Article  ADS  Google Scholar 

  3. R. A. Lewis, Phys. Med. Biol. 49, 3573 (2004).

    Article  Google Scholar 

  4. M. S. Kim, S. W. Oh, J. H. Lim and S. W. Han, Appl. Phys. Lett. 97, 2137031 (2010).

    Google Scholar 

  5. A. Momose, Jpn. J. Appl. Phys. 44, 6355 (2005).

    Article  ADS  Google Scholar 

  6. A. Yoneyama, T. Takeda, Y. Tsuchiya, J. Wu, T. T. Lwin, K. Hyodo and Y. Hirai, J. Synchrotron Rad. 12, 534 (2005).

    Article  Google Scholar 

  7. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens and E. Ziegler. Opt. Exp. 13, 6296 (2005).

    Article  ADS  Google Scholar 

  8. C. David, B. Nohammer and H. H. Solak, Appl. Phys. Lett. 81, 3287 (2002).

    Article  ADS  Google Scholar 

  9. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai and Y. Suzuki, Jpn. J. Appl. Phys. 42, L866 (2003).

    Article  ADS  Google Scholar 

  10. F. Pfeiffer, T. Weitkamp, O. Bunk and C. David. Nature Phys. 2, 258 (2006).

    Article  ADS  Google Scholar 

  11. A. Bravin, P. Coan and P. Suortti. Phys. Med. Biol. 58, R1 (2013).

    Article  ADS  Google Scholar 

  12. J. J. Socha, M. W.Westneat, J. F. Harrison, J. S. Waters and W. K. Lee, BMC Biol. 5, 1 (2007).

    Article  Google Scholar 

  13. A. Momose, H. Kuwabara and W. Yashiro, Appl. Phys. Exp. 4, 0666031 (2011).

    Article  Google Scholar 

  14. C. David, J. Bruder, T. Rohbeck, C. Grünzweig, C. Kottler, A. Daiz, O. Bunk and F. Pfeiffer, Microelectron Eng. 84, 1172 (2007).

    Article  Google Scholar 

  15. D. Noda, M. Tanaka, K. Shimada, W. Yashiro, A. Momose and T. Hattori, Microsyst. Technol. 14, 1311 (2008).

    Article  Google Scholar 

  16. T. Shibata and T. Nagano, Nat. Med. 2, 933 (1996).

    Article  Google Scholar 

  17. Y. S. Kashyap, T. Roy, P. S. Sarkar, P. S. Yadav, S. Mayank, S. Amar, K. Dasgupta and D. Sathiyamoorthy, Rev. Sci. Instrum. 78, 083703 (2007).

    Article  ADS  Google Scholar 

  18. E. F. Donnelly, K. G. Lewis, K. M. Wolske, D. R. Pickens and R. R. Price, Phys. Med. Biol. 51, 21 (2006).

    Article  Google Scholar 

  19. E. L. Ritman, Acad. Radiol. 16, 909 (2009).

    Article  Google Scholar 

  20. M. Stampanoni et al., Invest. Radiol. 46, 801 (2011).

    Article  Google Scholar 

  21. D. Stutman, T. J. Beck, J. A. Carrino and C. O. Bingham, Phys. Med. Biol. 56, 5697 (2011).

    Article  Google Scholar 

  22. S. C. Mayo, A. W. Stevenson and S. W. Wilkins, Materials 5, 937 (2012).

    Article  ADS  Google Scholar 

  23. T. Donath, F. Pfeiffer, O. Bunk, C. Grünzweig, E. Hempel, S. Popescu, P. Vock and C. David, Invest. Radiol. 45, 445 (2010).

    Google Scholar 

  24. Y. S. Lee et al., Acad. Radiol. 17, 244 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Ha Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, KH., Ryu, J.H., Jung, C.W. et al. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube. Journal of the Korean Physical Society 65, 2111–2116 (2014). https://doi.org/10.3938/jkps.65.2111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.2111

Keywords

Navigation