Skip to main content
Log in

Effect of deposition temperature on the formation of defect phases in BiFeO3 thin films

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We report the effects of deposition temperature on the evolution of defect and second phases and on the ferroelectric properties of BiFeO3 thin films. We grew BiFeO3 thin films on (001) SrTiO3 substrates by using pulsed laser deposition at temperatures in the range of 570–600 °C at intervals of 10 °C. We found that defects and a resulting second phase appeared at temperatures greater than 590 °C. The second phase led to significant changes in the optical absorption and to the appearance of impurity peaks in the X-ray diffraction data. An analysis of the X-ray diffraction data indicated that the second phase was Fe2O3. Atomic force microscopy measurements showed that the appearance of defects accompanied an abrupt increase in the surface roughness. Furthermore, the presence of the second phase significantly affected the ferroelectric hysteresis. Our results suggest that the evolution of defects and resulting second phase in BiFeO3 thin films depends strongly on the deposition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. J. Wang et al., Science 299, 1719 (2003).

    Article  ADS  Google Scholar 

  2. G. A. Smolenskii, V. Isupov, A. Agranovskaya and N. Kranik, Sov. Phys. Solid State 2, 2651 (1961).

    Google Scholar 

  3. P. Fischer, M. Polomska, I. Sosnowska and M. Szymanski, J. Phys. C 13, 1931 (1980).

    Article  ADS  Google Scholar 

  4. C. Ederer and N. A. Spaldin, Phys. Rev. Lett. 95, 257601 (2005).

    Article  ADS  Google Scholar 

  5. D. Lee, S. M. Yang, T. H. Kim, B. C. Jeon, Y. S. Kim and J. G. Yoon, Adv. Mater. 24, 402 (2012).

    Article  Google Scholar 

  6. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin and S.-W. Cheong, Science 324, 63 (2009).

    Article  ADS  Google Scholar 

  7. S. Y. Yang et al., Appl. Phys. Lett. 95, 062909 (2009).

    Article  ADS  Google Scholar 

  8. S. H. Baek et al., Nat. Mater. 9, 309 (2010).

    Article  ADS  Google Scholar 

  9. D. Lee et al., Adv. Mat. 24, 6490 (2012).

    Article  Google Scholar 

  10. W. S. Choi, M. F. Chisholm, D. J. Singh, T. Choi, Jr. G. E. Jellison and H. N. Lee, Nat. Commun. 3, 689 (2012).

    Article  ADS  Google Scholar 

  11. X. Qi, J. Dho, R. Tomov, M. G. Blamire and J. L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005).

    Article  ADS  Google Scholar 

  12. R. R. Das et al., Appl. Phys. Lett. 88, 242904 (2006).

    Article  ADS  Google Scholar 

  13. H. Béa et al., Appl. Phys. Lett. 87, 072508 (2005).

    Article  ADS  Google Scholar 

  14. B. C. Jeon et al., Adv. Mater. 25, 5643 (2013).

    Article  Google Scholar 

  15. H. W. Jang et al., Adv. Mater. 21, 817 (2009).

    Article  Google Scholar 

  16. Y. S. Kim, J. Kim, S. J. Moon, W. S. Choi, Y. J. Chang, J.-G. Yoon, J. Yu, J.-S. Chung and T. W. Noh, Appl. Phys. Lett. 94, 202906 (2009).

    Article  ADS  Google Scholar 

  17. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin and K. M. Rabe, Phys. Rev. B 71, 014113 (2005).

    Article  ADS  Google Scholar 

  18. P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom and J. L. Musfeldt, Appl. Phys. Lett. 96, 131907 (2010).

    Article  ADS  Google Scholar 

  19. J. F. Ihlefeld et al., Appl. Phys. Lett. 92, 142908 (2008).

    Article  ADS  Google Scholar 

  20. R. V. Pisarev, A. S. Moskvin, A. M. Kalashnikova and Th. Rasing, Phys. Rev. B 79, 235128 (2009).

    Article  ADS  Google Scholar 

  21. C. H. Yang et al., Nat. Mater. 8, 485 (2009).

    Article  ADS  Google Scholar 

  22. Z. Wen, G. Hu, C. Yang and W. Wu, Appl. Phys. A 97, 937 (2009).

    Article  ADS  Google Scholar 

  23. S. V. Kalinin, M. R. Suchomel, P. K. Davies and D. A. Bonnell, J. Am. Ceram. Soc. 85, 3011 (2002).

    Article  Google Scholar 

  24. J. Seidel et al., Nat. Mater. 8, 229 (2009).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Moon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, B.C., Chae, S.C., Kang, T.D. et al. Effect of deposition temperature on the formation of defect phases in BiFeO3 thin films. Journal of the Korean Physical Society 64, 1849–1853 (2014). https://doi.org/10.3938/jkps.64.1849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1849

Keywords

Navigation